The Influence of Ag on the Microstructure and Properties of Cu-Ni-Si Alloys
Abstract
:1. Introduction
2. Materials and Methods
- Samples prepared for observation of the microstructure were ground and polished mechanically, then electropolished and etched in an electrochemical reagent or using one of the following reagents: iron chloride, hydrochloric acid, and ethyl alcohol.
- The thermo-derivative analysis was completed with the application of a UMSA (Method and Apparatus for Universal Metallurgical Simulation and Analysis-Patent Serial No. PCT/CA02/01903, Silesian University of Technology, Gliwice, Poland) device equipped with a computer-controlled cooling system, which allows flexible setting of the cooling rate applied for Cu-2Ni-1Si and Cu-2Ni-1Si-0.8Ag alloys. The samples for thermo-derivative analysis were prepared with a diameter of Ø 8 mm and a height of 10 mm. Holes for thermocouples (type K) were made in the samples, where the thermal node occurs for this type and arrangement of the sample geometry.
- Microstructure and chemical composition were investigated with EDS microanalysis using a scanning electron microscope Zeiss Supra 25 and an MEF4A (SEM, Thornwood, NY, USA) optical microscope supplied by Leica together with their image analysis software.
- Hardness tests were performed with a hardness tester Vickers Future-Tech (FM-ARS 9000, FM-ARS9000, Future-Tech, Tokyo, Japan) with a load of 1000 gf for 10 s.
- Electrical conductivity was measured using a Sigmatest Foerster device (FOERSTER, Pittsburgh, PA, USA).
3. Results and Discussion
4. Conclusions
- Addition of 0.8 mass% Ag does not result in changes in the derivative curve of Cu2-Ni1-Si alloy, which may provide proof of dissolution of silver in the matrix at the time of crystallization.
- After heat and plastic treatment, silver precipitates as small precipitates of about 20–180 nm, which results in the increase of hardening of the alloy compared to Cu-2Ni-1Si alloy.
- Addition of the silver element does not cause changes in temperatures TSOL and TL in the Cu-2Ni-1Si alloy. Part of Ag during the crystallization process of the alloy dissolves in copper in the interdendritic spaces of the α matrix.
- Conductivity of Cu-2Ni-1Si alloy after heat and plastic treatment is about 14 MS/m, while in the alloy with the addition of 0.8 mass% Ag, it increases to 17 MS/m so goes up 18%. Hardness in Cu-2Ni-1Si alloy after heat treatment and cold plastic treatment is about 150 HV; hardness of the alloy with Ag addition and after heat treatment and cold plastic treatment increases to 193 HV so goes up 22%.
- The addition of silver at 0.8 mass% lowers the supersaturation temperature by 130 °C.
Author Contributions
Funding
Conflicts of Interest
References
- Stobrawa, J.; Rdzawski, Z.; Głuchowski, W.; Malec, W. Microstructure and properties of CuNi2Si1 alloy processed by continuous RCS method. J. Achiev. Mater. Manuf. Eng. 2009, 37, 466–479. [Google Scholar]
- Rdzawski, Z.; Stobrawa, J. Thermomechanical processing of CuNiSiCrMg alloy. Mater. Sci. Technol. 1993, 9, 142–149. [Google Scholar] [CrossRef]
- Rdzawski, Z. Copper Alloy; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2009; p. 157. (In Polish) [Google Scholar]
- Krupińska, B.; Rdzawski, Z. Effect of Re addition on the crystallization, heat treatment and structure of the Cu–Ni–Si-Cr alloy. J. Therm. Anal. Calorim. 2018, 134, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Krupiński, M.; Krol, M.; Krupinska, B.; Mazur, K.; Labisz, K. Influence of Sr addition on microstructure of the hypereutectic Zn-Al-Cu alloy. J. Therm. Anal. Calorim. 2018, 133, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Rdzawski, Z.; Ducki, K.; Jabłońska, M.; Śmiglewicz, A. Properties and microstructure of CuNi2Si1 alloy. Ores Non-Ferrous Metals 2019, R55, 78–83. (In Polish) [Google Scholar]
- Lu, D.; Wang, J.; Atrens, A.; Zou, X.-Q.; Lu, L.; Sun, B.-D. Calculation of Cu-rich part of Cu-Ni-Si phase diagram. Trans. Nonferrous Metals Soc. China 2007, 17, 12–15. [Google Scholar]
- Krupińska, B.; Rdzawski, Z.; Krupiński, M.; Pakieła, W. Precipitation Strengthening of Cu-Ni-Si Alloy. Materials 2020, 13, 1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupiński, M.; Smolarczyk, P.E.; Bonek, M. Microstructure and Properties of the Copper Alloyed with Ag and Ti Powders Using Fiber Laser. Materials 2020, 13, 2430. [Google Scholar] [CrossRef] [PubMed]
- Snopinski, P.; Krol, M.; Tanski, T.; Krupińska, B. Effect of cooling rate on microstructural development in alloy ALMG9. J. Therm. Anal. Calorim. 2018, 133, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Labisz, K.; Konieczny, J.; Jurczyk, S.; Tanski, T.; Krupinski, M. Thermo-derivative analysis of Al-Si-Cu alloy used for surface treatmen. J. Therm. Anal. Calorim. 2017, 129, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Knych, T.; Kwaśniewski, P.; Kawecki, A.; Kieniewicz, P. Impact of supersaturation conditions of CuNi2Si alloy on its mechanical and electrical properties after artificial aging. In Proceedings of the 37th School of Materials Engineering, Krynica, Poland, 29 September 2009; pp. 135–138. (In Polish). [Google Scholar]
- Zhao, D.M.; Dong, Q.; Liu, P.; Kang, B.X.; Huang, J.L.; Jin, Z.H. Structure and strength of the age hardened Cu-Ni-Si alloy. Mater. Chem. Phys. 2003, 79, 81–86. [Google Scholar] [CrossRef]
- Zhao, D.M.; Dong, Q.; Liu, P.; Kang, B.X.; Huang, J.L.; Jin, Z.H. Aging behavior of Cu–Ni–Si alloy. Mater. Sci. Eng. A 2003, 361, 93–99. [Google Scholar] [CrossRef]
- Hui, X.; Lei, J.; Zhenlin, L. Microstructure and solidification behavior of Cu-Ni-Si alloys. Mater. Charact. 2009, 60, 114–118. [Google Scholar]
- Zhang, Y.; Liu, P.; Tian, B.; Jia, S.G.; Liu, Y. The effects of aging precipitation on the recrystallization of CuNiSiCr alloy. Sci. Verse Sci. Direct Procedia Eng. 2012, 27, 1789–1793. [Google Scholar]
- Dobrzański, L.A.; Borek, W.; Mazurkiewicz, J. Influence of high strain rates on the structure and mechanical properties of high-manganes austenitic TWIP-type steel. Materialwiss. Werkst. 2016, 47, 428–435. [Google Scholar] [CrossRef]
- Dobrzanski, L.A.; Borek, W. Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels. Materials Science Forum 2010, 654–656, 266–269. [Google Scholar] [CrossRef]
- Tanski, T.; Labisz, K.; Krupinska, B.; Krupinski, M.; Krol, M.; Maniara, R.; Borek, W. Analysis of crystallization kinetics of cast aluminum-silicon alloy. J. Therm. Anal. Calorim. 2016, 123, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Borek, W.; Tanski, T.; Jonsta, Z.; Jonsta, P.; Cizek, L. Structure and mechanical properties of high-Mn TWIP steel after their thermo-mechanical and heat treatments. In METAL 2015, Proceedings of 24th International conference on metallurgy and materials, Brno, Czech Republic, 3–5 June 2015; Tanger Ltd.: Ostrava, Czech Republic, 2015; pp. 307–313. [Google Scholar]
- Ast, J.; Ghidelli, M.; Durst, K.; Göken, M.; Sebastiani, M.; Korsunsky, A.M. A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater. Des. 2019, 173, 107762. [Google Scholar]
- Sun, H.; Zang, Y.; Volinsky, A.A.; Wang, B.; Tian, B.; Song, K.; Chai, Z.; Liu, Y. Effects of Ag addition on hot deformation behavior of Cu-Ni-Si alloys. Adv. Eng. Mater. 2017, 19, 1600607. [Google Scholar] [CrossRef]
Sample Description | Elements as Compounds of the Investigated Cu Casts, Mass% | |||
---|---|---|---|---|
Ni | Si | Ag | Cu | |
Cu-2Ni-1Si | 2 | 1 | - | rest |
Cu-2Ni-1Si-0.8Ag | 2 | 1 | 0.8 | rest |
Element | Point #1 (wt.%) | Point #1 (at.%) | Point #2 | Point #2 (at.%) |
---|---|---|---|---|
Si | - | - | 17.1 | 30.7 |
Ni | - | - | 54.9 | 47.1 |
Cu | 100.0 | 100 | 28.0 | 22.2 |
Analyzed Alloy | Temperature, °C | Sample Mass, g | |
---|---|---|---|
TL | TSOL | ||
Cu-2Ni-1Si | 1098 | 1057 | 11.36 |
Cu-2Ni-1Si-0.8Ag | 1091 | 1060 | 11.33 |
Cu-2Ni-1Si | |||
---|---|---|---|
Heat Capacity in Liquid State Cpl, J/g °C | Heat Capacity in Solid State Cps, J/g °C | Weight of Sample, g | |
0.448 | 0.392 | 11.36 | |
Reaction | Latent Heat of Crystallization | Percentage, % | |
Samples J | Unit Weight of a Sample, J/g | ||
L → α | 1295.31 | 114.02 | 98.01 |
L → + Ni + Si | 22.35 | 1.97 | 1.99 |
Total | 1317.66 | 115.99 | 100 |
Cu-2Ni-1Si-0.6Ag | |||
Heat Capacity in Liquid State Cpl, J/g °C | Heat Capacity in Solid State Cps, J/g °C | Weight of Sample, g | |
0.460 | 0.383 | 11.33 | |
Reaction | Latent Heat of Crystallization | Percentage, % | |
Samples J | Unit Weight of a Sample, J/g | ||
L → α+Ni+Si+Ag | 1259.80 | 111.20 | 100 |
Element | Area #1 (Figure 6a) (wt.%) | Area #1 (Figure 6a) (at.%) | Point #1 (Figure 6c) (wt.%) | Point #1 (Figure 6c) (at.%) | Point #2 (Figure 6c) (at.%) | Point #2 (Figure 6c) (wt.%) |
---|---|---|---|---|---|---|
Si | 1.2 | 2.7 | 1.5 | 04.6 | 12.7 | 25.0 |
Ni | 2.7 | 2.8 | 5.2 | 07.5 | 37.1 | 34.9 |
Ag | 1.2 | 0.7 | 66.1 | 51.8 | 9.4 | 4.8 |
Cu | 94.9 | 93.8 | 27.2 | 36.1 | 40.7 | 35.3 |
Element | Point #1 (wt.%) | Point #1 (at.%) | Point #2 (wt.%) | Point #2 (at.%) | Point #3 (wt.%) | Point #3 (at.%) | Point #4 (wt.%) | Point #4 (at.%) |
---|---|---|---|---|---|---|---|---|
Si | 2.3 | 5.1 | 1.5 | 3.3 | 1.3 | 2.9 | 6.2 | 12.9 |
Ni | 7.1 | 7.4 | 5.1 | 5.4 | 4.9 | 5.3 | 23.4 | 23.2 |
Ag | 2.9 | 1.7 | 2.7 | 1.6 | 1.6 | 0.9 | 1.8 | 1.0 |
Cu | 87.7 | 85.8 | 90.7 | 90.7 | 92.1 | 90.8 | 68.6 | 62.9 |
The Samples | Conductivity MS/m | Standard Deviation | Average Hardness, HV1 | Standard Deviation |
---|---|---|---|---|
Cu-Ni-Si | 8 | 0.01 | 60 | 1.68 |
Cu-Ni-Si HT+CPD | 14 | 0.06 | 150 | 6.02 |
Cu-Ni-Si-Ag | 9 | 0.25 | 90 | 7.44 |
Cu-Ni-Si-Ag HT+CPD | 17 | 0.15 | 193 | 7.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupińska, B.; Borek, W.; Krupiński, M.; Karkoszka, T. The Influence of Ag on the Microstructure and Properties of Cu-Ni-Si Alloys. Materials 2020, 13, 3416. https://doi.org/10.3390/ma13153416
Krupińska B, Borek W, Krupiński M, Karkoszka T. The Influence of Ag on the Microstructure and Properties of Cu-Ni-Si Alloys. Materials. 2020; 13(15):3416. https://doi.org/10.3390/ma13153416
Chicago/Turabian StyleKrupińska, Beata, Wojciech Borek, Mariusz Krupiński, and Tatiana Karkoszka. 2020. "The Influence of Ag on the Microstructure and Properties of Cu-Ni-Si Alloys" Materials 13, no. 15: 3416. https://doi.org/10.3390/ma13153416
APA StyleKrupińska, B., Borek, W., Krupiński, M., & Karkoszka, T. (2020). The Influence of Ag on the Microstructure and Properties of Cu-Ni-Si Alloys. Materials, 13(15), 3416. https://doi.org/10.3390/ma13153416