Micro-Polluted Surface Water Treated by Yeast-Chitosan Bio-Microcapsules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Standards
2.2. Preparation of the Bio-Microcapsules
2.2.1. Yeast Extraction
2.2.2. Preparation of the Bio-Microcapsules
2.3. Experimental Set-Up and Conditions
2.4. Chemical Analysis
2.5. FTIR Spectroscopy
2.6. Scanning Electron Microscopy
2.7. Measurement of the Mechanical Strength and Permeability
2.8. Data Analysis
3. Results and Discussion
3.1. Optimum Microcapsule Preparation Conditions
3.2. Characterization of the Bio-Microcapsules
3.2.1. SEM
3.2.2. FTIR
3.3. Removal of Turbidity
3.4. Removal of Nitrite Nitrogen, Nitrate Nitrogen, Ammonia Nitrogen and Total Nitrogen
3.5. Effect of Water Quality Fluctuations on Removal Efficiency
3.5.1. Effect of a High Concentration of NH3–N
3.5.2. Effect of a High Concentration of Organic Matter
3.5.3. Effect of Temperature
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, T.-F.; Chen, Y.-P.; Kang, J.; Gao, X.; Guo, J.-S.; Fang, F.; Zhang, X.-T. Influence of filtration velocity on DON variation in BAF for micropolluted surface water treatment. Environ. Sci. Pollut. Res. 2016, 23, 23415–23421. [Google Scholar] [CrossRef] [PubMed]
- Sagbo, O.; Sun, Y.; Hao, A.; Gu, P. Effect of PAC addition on MBR process for drinking water treatment. Sep. Purif. Technol. 2008, 58, 320–327. [Google Scholar] [CrossRef]
- Randall, D.; Tsui, T. Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, 17–23. [Google Scholar] [CrossRef]
- Saeedi, R.; Naddafi, K.; Nabizadeh, R.; Mesdaghinia, A.; Nasseri, S.; Alimohammadi, M.; Nazmara, S. Simultaneous removal of nitrate and natural organic matter from drinking water using a hybrid heterotrophic/autotrophic/biological activated carbon bioreactor. Environ. Eng. Sci. 2012, 29, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, B.; Lin, Y.-L.; Zhang, T.-Y.; Ye, T.; Hu, C.-Y.; Lu, Y.-S.; Cao, T.-C.; Tang, Y.-L.; Gao, N.-Y. Mechanistic study on chlorine/nitrogen transformation and disinfection by-product generation in a UV-activated mixed chlorine/chloramines system. Water Res. 2020, 116116. [Google Scholar] [CrossRef]
- Allard, S.; Tan, J.; Joll, C.A.U.; Gunten, V. Mechanistic study on the formation of Cl-/Br-/I-trihalomethanes during chlorination/chloramination combined with a theoretical cytotoxicity evaluation. Environ. Sci. Technol. 2015, 49, 11105–11114. [Google Scholar] [CrossRef]
- Matilainen, A.; Sillanpää, M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 2010, 80, 351–365. [Google Scholar] [CrossRef]
- Feng, Z.; Sun, T. A novel selective hybrid cation exchanger for low-concentration ammonia nitrogen removal from natural water and secondary wastewater. Chem. Eng. J. 2015, 281, 295–302. [Google Scholar] [CrossRef]
- Chu, H.; Cao, D.; Dong, B.; Qiang, Z. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment. Water Res. 2010, 44, 1573–1579. [Google Scholar] [CrossRef]
- Li, L.; Zhu, W.; Zhang, P.; Zhang, Q.; Zhang, Z. AC/O3-BAC processes for removing refractory and hazardous pollutants in raw water. J. Hazard. Mater. 2006, 135, 129–133. [Google Scholar] [CrossRef]
- Hu, J.; Shang, R.; Deng, H.; Heijman, B.; Rietveld, L. Effect of PAC dosage in a pilot-scale PAC–MBR treating micro-polluted surface water. Bioresour. Technol. 2014, 154, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-X.; Zhao, Z.-H.; Chang, T.-S.; Liu, J.-G. Yeast screening from avermectins wastewater and investigation on the ability of its fermentation. Bioprocess Biosyst. Eng. 2011, 34, 1127–1132. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, S. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review. Biomass Bioenergy 2014, 64, 356–362. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, M.; Yang, Z.; Yang, Q. Biomass production from glutamate fermentation wastewater by the co-culture of Candida halophila and rhodotorula glutinis. Bioresour. Technol. 2005, 96, 1522–1524. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.H.; Park, Y.H. Growth of pichia guilliermondii A9, an osmotolerant yeast, in waste brine generated from kimchi production. Bioresour. Technol. 1999, 70, 231–236. [Google Scholar] [CrossRef]
- Daverey, A.; Pakshirajan, K. Treatment of dairy wastewater containing high amount of fats and oils using a yeast-bioreactor system under batch, fed-batch and continuous operation. Desalin. Water Treat. 2015, 57, 1–7. [Google Scholar] [CrossRef]
- Tan, L.; Li, H.; Ning, S.; Xu, B. Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast magnusiomyces ingens LH-F1. Bioresour. Technol. 2014, 158, 321–328. [Google Scholar] [CrossRef]
- Honfi, K.; Tálos, K.; Kőnig-Péter, A.; Kilár, F.; Pernyeszi, T. Copper(II) and phenol adsorption by cell surface treated candida tropicalis cells in aqueous suspension. Water Air Soil Pollut. 2016, 227. [Google Scholar] [CrossRef]
- Zheng, C.; Zhou, J.; Qu, B.; Wang, J.; Lu, H.; Zhao, H. Aerobic degradation of nitrobenzene by immobilization of rhodotorula mucilaginosa in polyurethane foam. J. Hazard. Mater. 2009, 168, 298–303. [Google Scholar] [CrossRef]
- Deng, F.; Zhang, Z.; Yang, C.; Guo, C.; Lu, G.; Dang, Z. Pyrene biodegradation with layer-by-layer assembly bio-microcapsules. Ecotoxicol. Environ. Saf. 2017, 138, 9–15. [Google Scholar] [CrossRef]
- Vemmer, M.; Patel, A. Review of encapsulation methods suitable for microbial biological control agents. Boil. Control. 2013, 67, 380–389. [Google Scholar] [CrossRef]
- Hui, C.-L.; Wang, W.-Y.; Kan, C.-W.; Ng, F.S.-F.; Zhou, C.-E.; Wat, E.; Zhang, V.X.; Chan, C.-L.; Lau, C.B.S.; Leung, P.-C. Preparation and characterization of chitosan/sodium alginate (CSA) microcapsule containing Cortex Moutan. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 434, 95–101. [Google Scholar] [CrossRef]
- Sargın, I.; Kaya, M.; Arslan, G.; Baran, T.; Ceter, T.; Sargin, I. Preparation and characterisation of biodegradable pollen–chitosan microcapsules and its application in heavy metal removal. Bioresour. Technol. 2015, 177, 1–7. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Kuo, C.W.; Chueh, D.-Y.; Chen, P. Surface modified alginate microcapsules for 3D cell culture. Surf. Sci. 2016, 648, 47–52. [Google Scholar] [CrossRef]
- Eratte, D.; Wang, B.; Dowling, K.; Barrow, C.J.; Adhikari, B. Survival and fermentation activity of probiotic bacteria and oxidative stability of omega-3 oil in co-microcapsules during storage. J. Funct. Foods 2016, 23, 485–496. [Google Scholar] [CrossRef]
- Qi, W.-T.; Ma, J.; Yu, W.-T.; Xie, Y.-B.; Wang, W.; Ma, X. Behavior of microbial growth and metabolism in alginate–chitosan–alginate (ACA) microcapsules. Enzym. Microb. Technol. 2006, 38, 697–704. [Google Scholar] [CrossRef]
- Mooranian, A.; Negrulj, R.; Salami, H.A. The impact of allylamine-bile acid combinations on cell delivery microcapsules in diabetes. J. Microencapsul. 2016, 33, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qu, Y.; Shen, W.; Wang, J.; Li, H.; Zhang, Z.; Li, S.; Zhou, J. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 497, 280–285. [Google Scholar] [CrossRef]
- Aragon, A.D.; Rodriguez, A.L.; Meirelles, O.; Roy, S.; Davidson, G.S.; Tapia, P.H.; Allen, C.; Joe, R.; Benn, D.; Washburne, M.W. Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures. Mol. Boil. Cell 2008, 19, 1271–1280. [Google Scholar] [CrossRef] [Green Version]
- State Environmental Protection Administration. Standard Methods for Water and Wastewater Monitoring and Analysis, 4th ed.; China Environmental Science Press: Beijing, China, 2002; pp. 200–284.
- Nourbakhsh, H.; Madadlou, A.; Djomeh, Z.E.; Wang, Y.-C.; Gunasekaran, S.; Mousavi, M. One-pot procedure for recovery of gallic acid from wastewater and encapsulation within protein particles. J. Agric. Food Chem. 2016, 64, 1575–1582. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Liang, H.-F.; Chung, C.-K.; Chen, M.-C.; Sung, H.-W. Physically crosslinked alginate/N, O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 2005, 26, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Rao, L.; Yu, H.; Xiang, H.; Pen, G.; Long, S.; Yang, C. Yeast-cell-based microencapsulation of chlorogenic acid as a water-soluble antioxidant. J. Food Eng. 2007, 80, 1060–1067. [Google Scholar] [CrossRef]
- Lou, R.; Xie, H.; Zheng, H.; Ren, Y.; Gao, M.; Guo, X.; Song, Y.; Yu, W.; Liu, X.; Ma, X. Alginate-based microcapsules with galactosylated chitosan internal for primary hepatocyte applications. Int. J. Boil. Macromol. 2016, 93, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhao, M.; Wang, Y. Immobilization of laccase by alginate–chitosan microcapsules and its use in dye decolorization. World J. Microbiol. Biotechnol. 2006, 23, 159–166. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Y.; Gao, B.; Zhao, Y.; Yue, Q. Coagulation performance and floc characteristics of aluminum sulfate using sodium alginate as coagulant aid for synthetic dying wastewater treatment. Sep. Purif. Technol. 2012, 95, 180–187. [Google Scholar] [CrossRef]
- Chen, F.; Liu, W.; Pan, Z.; Wang, Y.; Guo, X.; Sun, S.; Jia, R. Characteristics and mechanism of chitosan in flocculation for water coagulation in the Yellow River diversion reservoir. J. Water Process. Eng. 2020, 34, 101191. [Google Scholar] [CrossRef]
- Cheng, Y.-S.; Zheng, Y.; Labavitch, J.M.; VanderGheynst, J.S. The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella. Process. Biochem. 2011, 46, 1927–1933. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, T.; Fu, X.; Zhu, C.; Mou, H. Partially degraded chitosan-based flocculation to achieve effective deodorization of oyster (Crassostrea gigas) hydrolysates. Carbohydr. Polym. 2020, 234, 115948. [Google Scholar] [CrossRef]
- Tang, S.; Liao, Y.; Xu, Y.; Dang, Z.; Zhu, X.; Ji, G. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: A review. Bioresour. Technol. 2020, 123759. [Google Scholar] [CrossRef]
- Kubisi, A.; Ali, A.H.; Hipkin, C.R. Nitrite assimilation by the yeast Candida nitratophila. New Phytol. 1996, 132, 313–316. [Google Scholar] [CrossRef]
- Lin, H.-L.; Tsao, H.-W.; Huang, Y.-W.; Wang, Y.-C.; Yang, K.-H.; Yang, Y.-F.; Wang, W.-C.; Wen, C.-K.; Chen, S.-K.; Cheng, S.-S. Removal of nitrogen from secondary effluent of a petrochemical industrial park by a hybrid biofilm-carrier reactor with one-stage ANAMMOX. Water Sci. Technol. 2014, 69, 2526–2532. [Google Scholar] [CrossRef] [PubMed]
- Salerno, M.B.; Park, W.; Zuo, Y.; Logan, B.E. Inhibition of biohydrogen production by ammonia. Water Res. 2006, 40, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yang, M.; Hei, L.; Zheng, S. Using ammonium-tolerant yeast isolates: Candida halophila and rhodotorula glutinis to treat high strength fermentative wastewater. Environ. Technol. 2003, 24, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-J.; Lee, D.-I.; Keller, J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour. Technol. 2006, 97, 459–468. [Google Scholar] [CrossRef]
- Zeng, J.; Liao, S.; Qiu, M.; Chen, M.; Ye, J.; Zeng, J.; Wang, A. Effects of carbon sources on the removal of ammonium, nitrite and nitrate nitrogen by the red yeast Sporidiobolus pararoseus Y1. Bioresour. Technol. 2020, 312, 123593. [Google Scholar] [CrossRef]
- Lanciotti, R. Use of yarrowia lipolytica strains for the treatment of olive mill wastewater. Bioresour. Technol. 2005, 96, 317–322. [Google Scholar] [CrossRef]
- Recek, M.; Raspor, P. Yeast growth potential and COD reduction in waste water from ergot alkaloid production. Food Technol. Biotechnol. 1999, 37, 159–163. [Google Scholar]
- Tapia, C.; Montezuma, V.; Pedram, M.Y. Microencapsulation by spray coagulation of diltiazem HCl in calcium alginate-coated chitosan. AAPS Pharm. Sci. Tech. 2008, 9, 1198–1206. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Song, L.; Fang, H.; Shi, Y.; Li, Y.-Y.; Liu, R.; Niu, Q. Effect of temperature on the anaerobic digestion of cardboard with waste yeast added: Dose-response kinetic assays, temperature coefficient and microbial co-metabolism. J. Clean. Prod. 2020, 122949. [Google Scholar] [CrossRef]
- Benet, M.; Miguel, A.; Carrasco, F.; Li, T.; Planells, J.; Alepuz, P.; Tordera, V.; Ortin, J.E.P. Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 794–802. [Google Scholar] [CrossRef]
- Lin, Z.; Huang, W.; Zhou, J.; He, X.; Wang, J.; Wang, X.; Zhou, J. The variation on nitrogen removal mechanisms and the succession of ammonia oxidizing archaea and ammonia oxidizing bacteria with temperature in biofilm reactors treating saline wastewater. Bioresour. Technol. 2020, 314, 123760. [Google Scholar] [CrossRef] [PubMed]
CODMn (mg/L) | TOC (Total Organic Carbon) (mg/L) | NH3-N (mg/L) | TN (Total Nitrogen) (mg/L) | UV254 (Ultraviolet 254) (cm−1) | pH (-) | Turbidity (NTU) |
---|---|---|---|---|---|---|
4.944 | 4.14 | 1.504 | 2.486 | 0.090 | 7.10 | 15.3 |
Experiment Number | Factor Level | Mechanical Strength (5 Capsules)/(g·cm−2) | Shape Description | |||
---|---|---|---|---|---|---|
A | B | C | D | |||
1 | 1.5 | 1.0 | 15 | 5 | 23.71 | uneven, long tail |
2 | 1.5 | 2.0 | 20 | 10 | 42.10 | as above |
3 | 1.5 | 4.0 | 30 | 15 | 49.67 | as above |
4 | 1.5 | 5.0 | 45 | 20 | 44.10 | as above |
5 | 2.0 | 1.0 | 20 | 15 | 174.58 | basically uniform with a small tail |
6 | 2.0 | 2.0 | 15 | 20 | 206.17 | as above |
7 | 2.0 | 4.0 | 45 | 5 | 361.73 | as above |
8 | 2.0 | 5.0 | 30 | 10 | 585.38 | as above |
9 | 2.5 | 1.0 | 30 | 20 | 94.88 | as above |
10 | 2.5 | 2.0 | 45 | 15 | 264.53 | basically uniform, some with a small tip |
11 | 2.5 | 4.0 | 15 | 10 | 156.51 | as above |
12 | 2.5 | 5.0 | 20 | 5 | 304.88 | as above |
13 | 3.0 | 1.0 | 45 | 10 | 252.64 | spherically uniform |
14 | 3.0 | 2.0 | 30 | 5 | 288.13 | as above |
15 | 3.0 | 4.0 | 20 | 20 | 555.22 | as above |
16 | 3.0 | 5.0 | 15 | 15 | 307.95 | as above |
K1 | 39.90 | 136.45 | 173.59 | 244.61 | - | |
K2 | 331.97 | 200.23 | 202.42 | 259.16 | ||
K3 | 205.20 | 280.78 | 254.52 | 199.18 | ||
K4 | 350.99 | 310.58 | 230.75 | 225.09 | ||
k1 | 9.97 | 34.11 | 43.40 | 61.15 | ||
k2 | 82.99 | 50.06 | 50.61 | 64.79 | ||
k3 | 51.30 | 70.20 | 63.63 | 49.80 | ||
k4 | 87.75 | 77.64 | 57.69 | 56.27 | ||
R | 77.77 | 43.53 | 20.23 | 14.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, L.; Shi, J. Micro-Polluted Surface Water Treated by Yeast-Chitosan Bio-Microcapsules. Materials 2020, 13, 3519. https://doi.org/10.3390/ma13163519
Liu X, Wang L, Shi J. Micro-Polluted Surface Water Treated by Yeast-Chitosan Bio-Microcapsules. Materials. 2020; 13(16):3519. https://doi.org/10.3390/ma13163519
Chicago/Turabian StyleLiu, Xiao, Lin Wang, and Jun Shi. 2020. "Micro-Polluted Surface Water Treated by Yeast-Chitosan Bio-Microcapsules" Materials 13, no. 16: 3519. https://doi.org/10.3390/ma13163519
APA StyleLiu, X., Wang, L., & Shi, J. (2020). Micro-Polluted Surface Water Treated by Yeast-Chitosan Bio-Microcapsules. Materials, 13(16), 3519. https://doi.org/10.3390/ma13163519