The Effect of Interlayer Materials on Ceramic Damage in SiC/Al Composite Structure
Abstract
:1. Introduction
2. Test Procedure and Method
2.1. Materials
2.2. Preparation of Structures
2.3. Impact Tests
2.4. Simulation Method
3. Results and Discussion
3.1. Impact Tests’ Results
3.2. Simulation Results of Impact Tests
3.3. Further Simulation and Discussion
- Incompressible material with significant deformation capacity, low modulus and low strength;
- Materials with certain deformability, high in-plane strength, relatively low modulus and rigidity in the thickness direction;
- Materials with brittleness, high in-plane strength, large modulus and density in the thickness direction.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- David, N.V.; Gao, X.-L.; Zheng, J.Q. Ballistic Resistant Body Armor: Contemporary and Prospective Materials and Related Protection Mechanisms. Appl. Mech. Rev. 2009, 62, 1–20. [Google Scholar] [CrossRef]
- Crouch, I.G. Body armour—New materials, new systems. Def. Technol. 2019, 15, 241–253. [Google Scholar] [CrossRef]
- Medvedovski, E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1. Ceram. Int. 2010, 36, 2103–2115. [Google Scholar] [CrossRef]
- Öberg, E.K.; Dean, J.; Clyne, T.W. Effect of inter-layer toughness in ballistic protection systems on absorption of projectile energy. Int. J. Impact Eng. 2015, 76, 75–82. [Google Scholar] [CrossRef]
- Yao, R.; Su, F.; Mao, R. Influence of interfacial bonding conditions on the anti-penetration performance of ceramic/metal composite targets. Int. J. Mech. Mater. Des. 2019, 15, 833–844. [Google Scholar] [CrossRef]
- Harris, A.; Vaughan, B.; Yeomans, J.; Smith, P.; Burnage, S. Ballistic testing of surface-treated alumina and silicon carbide with improved adhesive bond strength. Int. J. Appl. Ceram. Technol. 2017, 14, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; Chung, J.; Seo, S.; Lee, S.; Lee, Y.; Lee, S.; Choi, H.-J. Enhancement of interfacial adhesion based on nanostructured alumina/aluminum laminates. Compos. Part B Eng. 2017, 129, 204–209. [Google Scholar] [CrossRef]
- Rashed, A.; Yazdani, M.; Babaluo, A.A.; Hajizadeh Parvin, P. Investigation on high-velocity impact performance of multi-layered alumina ceramic armors with polymeric interlayers. J. Compos. Mater. 2016, 50, 3561–3576. [Google Scholar] [CrossRef]
- Kong, X.P.; Jiang, Z.G.; Liu, F. Simulation on Ceramic Composite Armors against Multi-Hit of APPs. Appl. Mech. Mater. 2011, 105–107, 1648–1652. [Google Scholar] [CrossRef]
- Seifert, W.; Strassburger, E.; Grefen, S.; Schaare, S. Experimental study about the influence of adhesive stiffness to the bonding strengths of adhesives for ceramic/metal targets. Def. Technol. 2016, 12, 188–200. [Google Scholar] [CrossRef]
- Ahmed, A.; Chouhan, H.; Kartikeya, K.; Bhatnagar, N. Study on low and high strain rate behaviour of the adhesive bonds for armour application. J. Adhes. 2019, 96, 345–358. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Yu, X.; Ma, Z.; Gao, J.; Kang, X. Effect of interlayer on stress wave propagation in CMC/RHA multi-layered structure. Compos. Sci. Technol. 2010, 70, 1669–1673. [Google Scholar] [CrossRef]
- Tasdemirci, A.; Hall, I.W. Experimental and Modeling Studies of Stress Wave Propagation in Multilayer Composite Materials: Low Modulus Interlayer Effects. J. Compos. Mater. 2016, 39, 981–1005. [Google Scholar] [CrossRef]
- Tasdemirci, A.; Tunusoglu, G. Experimental and numerical investigation of the effect of interlayer on the damage formation in a ceramic/composite armor at a low projectile velocity. J. Thermoplast. Compos. Mater. 2016, 30, 88–106. [Google Scholar] [CrossRef]
- Gama, B.A.; Bogetti, T.A.; Fink, B.K.; Yu, C.J.; Claar, T.D.; Eifert, H.H.; Gillespie, J.W., Jr. Aluminum foam integral armor—A new dimension in armor design. Compos. Struct. 2001, 52, 381–395. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Z.; Chen, Z. Design and characteristics of hybrid composite armor subjected to projectile impact. Mater. Des. 2013, 46, 634–639. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Z.; Chen, Z.; Cheng, X.; Wang, Y.; Chen, X.; Liu, J.; Li, B.; Wang, S. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater. Des. 2015, 87, 421–427. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Z.; Cheng, X.; Wang, Y.; Amankwa, A.R.; Xu, J. Design and ballistic penetration of the ceramic composite armor. Compos. Part B Eng. 2016, 84, 33–40. [Google Scholar] [CrossRef]
- Børvik, T.; Olovsson, L.; Dey, S.; Langseth, M. Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates. Int. J. Impact Eng. 2011, 38, 577–589. [Google Scholar] [CrossRef]
- Forquin, P.; Tran, L.; Louvigné, P.-F.; Rota, L.; Hild, F. Effect of aluminum reinforcement on the dynamic fragmentation of SiC ceramics. Int. J. Impact Eng. 2003, 28, 1061–1076. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Mishra, R.; Jain, S.; Padhee, S.S.; Agnihotri, P.K. Deformation behavior of single and multi-layered materials under impact loading. Thin-Walled Struct. 2018, 126, 193–204. [Google Scholar] [CrossRef]
- Chi, R.; Serjouei, A.; Sridhar, I.; Geoffrey, T.E.B. Pre-stress effect on confined ceramic armor ballistic performance. Int. J. Impact Eng. 2015, 84, 159–170. [Google Scholar] [CrossRef]
- Holmquist, T.J.; Johnson, G.R. Characterization and evaluation of silicon carbide for high-velocity impact. J. Appl. Phys. 2005, 97, 093502. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.B.; Lee, J.; Cho, S.; Park, H.; Yeom, S.; Park, S.H. A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. Int. J. Precis. Eng. Manuf. 2012, 13, 759–764. [Google Scholar] [CrossRef]
- Ehret, A.E. On a molecular statistical basis for Ogden’s model of rubber elasticity. J. Mech. Phys. Solids 2015, 78, 249–268. [Google Scholar] [CrossRef]
- Cho, H.; Mayer, S.; Pöselt, E.; Susoff, M.; in’t Veld, P.J.; Rutledge, G.C.; Boyce, M.C. Deformation mechanisms of thermoplastic elastomers: Stress-strain behavior and constitutive modeling. Polymer 2017, 128, 87–99. [Google Scholar] [CrossRef]
- Nunes, S.G.; Scazzosi, R.; Manes, A.; Amico, S.C.; Júnior, W.F.d.A.; Giglio, M. Influence of Projectile and Thickness on the Ballistic Behavior of Aramid Composites: Experimental and Numerical Study. Int. J. Impact Eng. 2019, 132, 103307. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Chavan, V.V.; Ahmad, S.; Alagirusamy, R.; Bhatnagar, N. Ballistic impact response of Kevlar® reinforced thermoplastic composite armors. Int. J. Impact Eng. 2016, 89, 1–13. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Ahmad, S. Ballistic Impact Behaviour of Thermoplastic Kevlar Composites: Parametric Studies. Procedia Eng. 2017, 173, 355–362. [Google Scholar] [CrossRef]
- English, S.A.; Briggs, T.M.; Nelson, S.M. Quantitative validation of carbon-fiber laminate low velocity impact simulations. Compos. Struct. 2016, 135, 250–261. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dor, G.; Dubinsky, A.; Elperin, T. Optimization of multi-layered metallic shield. Nucl. Eng. Des. 2011, 241, 2020–2025. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, Y.; Shen, Z.; Cai, Q. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems. Ceram. Int. 2017, 43, 10368–10376. [Google Scholar] [CrossRef]
- Available online: https://www.signal-processing.com/table.php (accessed on 21 August 2020).
- Grady, D.E. Shock-wave strength properties of boron carbide and silicon carbide. J. Phys. IV 1994, 4, C8-385–C8-391. [Google Scholar] [CrossRef] [Green Version]
Number | Intermediate Layer Thickness in Experiments (mm) | Intermediate Layer in Simulation |
---|---|---|
Structure 1 | 0.26 | 0.25 mm TPU |
Structure 2 | 0.75 | 0.15 mm TPU + 0.5 mm AFRP + 0.15 mm TPU |
Structure 3 | 0.80 | 0.15 mm TPU+ 0.5 mm CFRP + 0.15 mm TPU |
Structure 4 | - | 0.5 mm TPU |
Structure 5 | - | 0.5 mm AFRP |
Structure 6 | - | 0.5 mm CFRP |
Parameters | Value |
---|---|
Density, ρ(kg/m3) | 3200 |
Shear modulus, G (GPa) | 193 |
Intact normalized strength parameter, A | 0.96 |
Fracture normalized strength parameter, B | 0.35 |
Strength parameter for strain rate dependence, C | 0 |
Fractured normalized strength parameter, M | 1 |
Intact strength parameter, N | 0.65 |
Maximum tensile strength, MPa | 370 |
Maximum normalized fractured strength, Sfmax | 0.8 |
Hugoniot elastic limit, HEL (GPa) | 13 |
Pressure component at the Hugoniot elastic limit, PHEL (GPa) | 5.9 |
Beta | 1.0 |
Parameter for plastic strain to fracture, D1, D2 | 0.48, 0.48 |
Pressure coefficients, K1, K2, K3 | 204, 0, 0 |
Density, ρ (kg/m3) | Elastic Modulus, E (MPa) | Poisson’s Ratio, ν | Yield Stress, SIGY (MPa) | Tangent Modulus, ETAN (MPa) | Failure Strain |
---|---|---|---|---|---|
1100 | 25 | 0.495 | 10 | 80 | 2.5 |
Parameters | AFRP | CFRP |
---|---|---|
Density, ρ(g·cm−3) | 1.18 | 1.59 |
Elastic modulus, Ex (GPa) | 14.63 | 63.90 |
Elastic modulus, Ey (GPa) | 14.63 | 62.70 |
Elastic modulus, Ez (GPa) | 4.30 | 8.19 |
Shear modulus, Gxy (GPa) | 6.98 | 3.44 |
Shear modulus, Gxz (GPa) | 6.98 | 3.27 |
Shear modulus, Gyz (GPa) | 6.98 | 3.25 |
Poisson’s ratio, νxy | 0.048 | 0.048 |
Poisson’s ratio,νzx | 0.18 | 0.051 |
Poisson’s ratio,νzy | 0.18 | 0.051 |
In-plane tensile strength, Xt (MPa) | 365 | 769 |
In-plane tensile strength, Yt (MPa) | 365 | 823 |
In-plane compressive strength, Yc (MPa) | 113 | 916 |
In-plane shear strength, Sc (MPa) | 67 | 77 |
Normal tensile stress, Sn (MPa) | 62.8 | 60.0 |
Tranverse shear strength, Ss (MPa) | 22.9 | 50.0 |
Erosion Effective Strain | 1.5 | 0.1 |
Shot Number | Structure 1 | Velocities in Structure 1 (m/s) | Structure 2 | Velocities in Structure 2 (m/s) | Structure 3 | Velocities in Structure 3 (m/s) |
---|---|---|---|---|---|---|
1 | 8 | 161.3 | 1 | 166.6 | 4 | 168.8 |
2 | 3 | 170.4 | 1 | 162.4 | 5 | 162.3 |
3 | 2 | 171.9 | 1 | 176.2 | 4 | 167.9 |
4 | 2 | 166.6 | 1 | 164.6 | 6 | 170.1 |
Sum of 4 | 15 | - | 4 | - | 19 | - |
5–9 | - | - | 13 | 163.5, 169.7, 169.7, 164.0, 159.5 | - | - |
Total | 15 | - | 17 | 19 | - |
Material | Density g/cm3 | Modulus in the Thickness Direction (GPa) | Acoustic Impedance in the Thickness Direction (g·cm−2·s−1×105) | Sound Velocity in-Plane Direction (m/s) | Reflection Coefficient | Transmission Coefficient |
---|---|---|---|---|---|---|
SiC | 3.18 | 441 | 25.5 [33] | 12020 [34] | 0 | 1 |
TPU | 1.15 | - | 1.80 | 1700 | −0.87 | 0.13 |
AFRP | 1.23 | 3.62 | 2.11 | - | −0.85 | 0.15 |
CFRP | 1.59 | 5.89 | 3.06 | - | −0.79 | 0.21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, J.; Wang, Y.; An, R.; Zhang, B.; Cheng, H.; Wang, F. The Effect of Interlayer Materials on Ceramic Damage in SiC/Al Composite Structure. Materials 2020, 13, 3709. https://doi.org/10.3390/ma13173709
Bao J, Wang Y, An R, Zhang B, Cheng H, Wang F. The Effect of Interlayer Materials on Ceramic Damage in SiC/Al Composite Structure. Materials. 2020; 13(17):3709. https://doi.org/10.3390/ma13173709
Chicago/Turabian StyleBao, Jiawei, Yangwei Wang, Rui An, Bowen Zhang, Huanwu Cheng, and Fuchi Wang. 2020. "The Effect of Interlayer Materials on Ceramic Damage in SiC/Al Composite Structure" Materials 13, no. 17: 3709. https://doi.org/10.3390/ma13173709
APA StyleBao, J., Wang, Y., An, R., Zhang, B., Cheng, H., & Wang, F. (2020). The Effect of Interlayer Materials on Ceramic Damage in SiC/Al Composite Structure. Materials, 13(17), 3709. https://doi.org/10.3390/ma13173709