Effect of Carbon Addition and Mixture Method on the Microstructure and Mechanical Properties of Silicon Carbide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Jiang, D.; Lin, Q.; Chen, Z.; Huang, Z. Properties of silicon carbide ceramics from gelcasting and pressureless sintering. Mater. Des. 2015, 65, 12–16. [Google Scholar] [CrossRef]
- Magnani, G.; Brentari, A.; Burresi, E.; Raiteri, G. Pressureless sintered silicon carbide with enhanced mechanical properties obtained by the two-step sintering method. Ceram. Int. 2014, 40, 1759–1763. [Google Scholar] [CrossRef]
- Liang, H.; Yao, X.; Huang, Z.; Zeng, Y.; Su, B. Effect of sintering techniques on the microstructure of liquid-phase-sintered SiC ceramics. J. Eur. Ceram. Soc. 2016, 36, 1863–1871. [Google Scholar] [CrossRef]
- Ogawa, I.; Nishikubo, K.; Imamura, T. Growth of graphite particles in carbons/SiC/B4C composites. Carbon 1999, 37, 1000–1002. [Google Scholar] [CrossRef]
- Paris, V.; Frage, N.; Dariel, M.P.; Zaretsky, E. The spall strength of silicon carbide and boron carbide ceramics processed by spark plasma sintering. Int. J. Impact Eng. 2010, 37, 1092–1099. [Google Scholar] [CrossRef]
- Raju, K.; Yoon, D.-H. Sintering additives for SiC based on the reactivity: A review. Ceram. Int. 2016, 42, 17947–17962. [Google Scholar] [CrossRef]
- Moskovskikh, D.O.; Song, Y.; Rouvimov, S.; Rogachev, A.S.; Mukasyan, A.S. Silicon carbide ceramics: Mechanical activation, combustion and spark plasma sintering. Ceram. Int. 2016, 42, 12686–12693. [Google Scholar] [CrossRef]
- Aygüzer Yaşar, Z.; DeLucca, V.A.; Haber, R.A. Influence of oxygen content on the microstructure and mechanical properties of SPS SiC. Ceram. Int. 2018, 44. [Google Scholar] [CrossRef]
- Ayguzer Yasar, Z.; Haber, R. Effect of Acid Etching Time and Concentration on Oxygen Content of Powder on the Microstructure and Elastic Properties of Silicon Carbide Densified by SPS. Int. J. Mater. Sci. Appl. 2020, 9, 7–13. [Google Scholar] [CrossRef]
- Kaur, S.; Cutler, R.A.; Shetty, D.K. Short-crack fracture toughness of silicon carbide. J. Am. Ceram. Soc. 2009, 92, 179–185. [Google Scholar] [CrossRef]
- Šajgalík, P.; Sedláček, J.; Lenčéš, Z.; Dusza, J.; Lin, H.-T. Additive-free hot-pressed silicon carbide ceramics—A material with exceptional mechanical properties. J. Eur. Ceram. Soc. 2016, 36, 1333–1341. [Google Scholar] [CrossRef]
- Ma, J.M.; Ye, F.; Cao, Y.G.; Liu, C.F.; Zhang, H.J. Microstructure and mechanical properties of liquid phase sintered silicon carbide composites. J. Zhejiang Univ. Sci. A 2010, 11, 766–770. [Google Scholar] [CrossRef]
- Silicon Carbide Based Hard Materials; Schwetz, K.A. (Ed.) Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Properties and Applications of Silicon Carbide Ceramics; Yamada, K.; Mohri, M. (Eds.) Elsevier Applied Science: Oxford, UK, 1991. [Google Scholar]
- Groth, B.P. On the Use of Raman Spectroscopy and Instrumented Indentation for Characterizing Damage in Machined Carbide Ceramics. Ph.D. Thesis, Rutgers University, New Brunswick, NJ, USA, 2013. [Google Scholar]
- Slusark, D.M. The Effect of Microstructural Variation on the Mechanical and Acoustic Properties of Silicon Carbide. Ph.D. Thesis, Rutgers University, New Brunswick, NJ, USA, 2012. [Google Scholar]
- Lanfant, B.; Leconte, Y.; Bonnefont, G.; Garnier, V.; Jorand, Y.; Le Gallet, S.; Pinault, M.; Herlin-Boime, N.; Bernard, F.; Fantozzi, G. Effects of carbon and oxygen on the spark plasma sintering additive-free densification and on the mechanical properties of nanostructured SiC ceramics. J. Eur. Ceram. Soc. 2015, 35, 3369–3379. [Google Scholar] [CrossRef]
- Maître, A.; Put, A.V.; Laval, J.P.; Valette, S.; Trolliard, G. Role of boron on the Spark Plasma Sintering of an α-SiC powder. J. Eur. Ceram. Soc. 2008, 28, 1881–1890. [Google Scholar] [CrossRef] [Green Version]
- Lomello, F.; Bonnefont, G.; Leconte, Y.; Herlin-Boime, N.; Fantozzi, G. Processing of nano-SiC ceramics: Densification by SPS and mechanical characterization. J. Eur. Ceram. Soc. 2012, 32, 633–641. [Google Scholar] [CrossRef]
- Tanaka, H. Silicon carbide powder and sintered materials. J. Ceram. Soc. Jpn. 2011, 119, 218–233. [Google Scholar] [CrossRef] [Green Version]
- Balong, M.; Sedlackova, P.; Zifcak, P.; Janega, J. Liquid phase sintering of SiC with rare-earth oxides. Ceram. Silikaty 2005, 49, 259–262. [Google Scholar]
- Stobierski, L.; Gubernat, A. Sintering of silicon carbide I. Effect of carbon. Ceram. Int. 2003, 29, 287–292. [Google Scholar] [CrossRef]
- Clegg, W.J. Role of Carbon in the Sintering of Boron-Doped Silicon Carbide. J. Am. Ceram. Soc. 2004, 83, 1039–1043. [Google Scholar] [CrossRef]
- Rijswijk, W.; Shanefield, D. Effects of carbon as a sintering aid in silicon carbide. J. Am. Ceram. Soc. 1990, 73, 148–149. [Google Scholar] [CrossRef]
- Raczka, M.; Gorny, G.; Stobierski, L.; Rozniatowski, K. Effect of carbon content on the microstructure and properties of silicon carbide-based sinters. Mater. Charact. 2001, 46, 245–249. [Google Scholar] [CrossRef]
- Hamminger, R. Carbon inclusions in sintered silicon carbide. J. Am. Ceram. Soc. 1989, 72, 1741–1744. [Google Scholar] [CrossRef]
- Magnani, G.; Sico, G.; Brentari, A.; Fabbri, P. Solid-state pressureles sintering of silicon carbide below 2000 °C. J. Eur. Ceram. Soc. 2014, 3, 4095–4098. [Google Scholar] [CrossRef]
- Prochazka, S.; Scanlan, R.M. Effect of boron and carbon on sintering of SiC. J. Am. Ceram. Soc. 1974, 58, 39733. [Google Scholar] [CrossRef]
- Roy, J.; Chandra, S.; Das, S.; Maitra, S. Oxidation behaviour of silicon carbide—A review. Rev. Adv. Mater. Sci. 2014, 38, 29–39. [Google Scholar]
- Quanli, J.; Haijun, Z.; Suping, L.; Xiaolin, J. Effect of particle size on oxidation of silicon carbide powders. Ceram. Int. 2007, 33, 309–313. [Google Scholar] [CrossRef]
- Evans, J. Pressureless Sintering of Boron Carbide; Imperial College London: London, UK, 2014. [Google Scholar]
- Kim, Y.W.; Mitomo, M.; Emoto, H.; Lee, J.G. Effect of initial α-phase content on microstructure and mechanical properties of sintered silicon carbide. J. Am. Ceram. Soc. 1998, 81, 3136–3140. [Google Scholar] [CrossRef]
- Grasso, S.; Saunders, T.; Porwal, H.; Reece, M. Ultra-high temperature spark plasma sintering of α-SiC. Ceram. Int. 2015, 41, 225–230. [Google Scholar] [CrossRef]
- Bagienski, S.E. Effect of Sintering Time and Composition of Sintering Aids on. Mater. Sci. Eng. 2013, 1–49. [Google Scholar] [CrossRef]
- Hulbert, D.M.; Jiang, D.; Dudina, D.V.; Mukherjee, A.K. the synthesis and consolidation of hard materials by spark plasma sintering. Int. J. Refract. Metals Hard Mater. 2009, 27, 367–375. [Google Scholar] [CrossRef]
- Munir, Z.; Anselmi-Tamburini, U.; Ohyanagı, M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 2006, 41, 763–777. [Google Scholar] [CrossRef]
- Guillard, F.; Allemand, A.; Lulewicz, J.D.; Galy, J. Densification of SiC by SPS-effects of time, temperature and pressure. J. Eur. Ceram. Soc. 2007, 27, 2725–2728. [Google Scholar] [CrossRef]
- ASTM C1327-15. Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Quinn, G.D.; Salem, J.; Bar-On, I.; Cho, K.; Foley, M.; Fang, H. Fracture toughness of advanced ceramics at room temperature. J. Res. Natl. Inst. Stand. Technol. 1992, 97, 579. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, Y.; Wei, Y.; Li, Y.; Zhang, H.; Liu, X.; Huang, Z. Preparation of dense and high-purity SiC ceramics by pressureless solid-state-sintering. Ceram. Int. 2019, 45, 19771–19776. [Google Scholar] [CrossRef]
α-SiC Acheson Type Mainly 6H Polytype | ||
---|---|---|
Total carbon | 28.5–29.5 wt.% | |
Impurity | O | 1.7 wt.% |
Fe | 0.04 wt.% | |
Al | 0.03 wt.% | |
Ca | 0.003 wt.% | |
Specific surface area | 23–26 m2/g | |
Particle size distribution | D 90% | 0.76 µm |
D 50% | 0.42 µm | |
D 10% | 0.22 µm |
Density (g/cm3) | Average Grain Size (std. dev.) (µm) | E (GPa) | ||||
---|---|---|---|---|---|---|
Samples | Dry Mixing | Wet Mixing | Dry Mixing | Wet Mixing | Dry Mixing | Wet Mixing |
0.5C | 3.18 | 3.16 | 4.44 (0.88) | 3.54 (0.96) | 442 | 432 |
1.0C | 3.18 | 3.19 | 8.79 (3.17) | 3.79 (0.70) | 451 | 447 |
1.5C | 3.18 | 3.19 | 10.74 (3.03) | 4.11 (0.61) | 451 | 450 |
2.0C | 3.19 | 3.18 | 2.84 (0.51) | 4.05 (0.90) | 439 | 434 |
2.5C | 3.18 | 3.18 | 5.74 (1.28) | 3.99 (1.40) | 424 | 432 |
3.0C | 3.16 | 3.16 | 5.82 (1.19) | 2.80 (0.95) | 418 | 401 |
3.5C | 3.16 | 3.17 | 5.55 (2.13) | 2.22 (0.41) | 422 | 400 |
4.0C | 3.16 | 3.15 | 3.23 (0.78) | 2.17 (0.40) | 393 | 379 |
4.5C | 3.14 | 3.14 | 6.14 (1.78) | 2.06 (0.57) | 404 | 355 |
5.0C | 3.13 | 3.11 | 4.95 (1.19) | 1.75 (0.36) | 364 | 351 |
Dry Mixing | Wet Mixing | |||||||
---|---|---|---|---|---|---|---|---|
Samples | Phase Fraction 4H (%) | Phase Fraction 6H (%) | Phase Fraction C-2H (%) | Average Grain Size (std. dev.) (µm) | Phase Fraction 4H (%) | Phase Fraction 6H (%) | Phase Fraction C-2H (%) | Average Grain Size (std. dev.) (µm) |
0.5C | 50.3 (0.2) | 49.7 (0.2) | – | 4.44 (0.88) | 45.0 (0.4) | 55.0 (0.4) | – | 3.54 (0.96) |
1.0C | 69.7 (0.5) | 30.3 (0.3) | – | 8.79 (3.17) | 48.1 (0.2) | 51.9 (0.2) | – | 3.79 (0.70) |
1.5C | 71.9 (0.2) | 28.1 (0.3) | – | 10.74 (3.03) | 57.6 (0.6) | 42.4 (0.5) | – | 4.11 (0.61) |
2.0C | 37.2 (0.2) | 61.9 (0.2) | 0.9 (0.2) | 2.84 (0.51) | 50.1 (0.2) | 49.5 (0.3) | 0.4 (0.2) | 4.05 (0.90) |
2.5C | 53.5 (0.2) | 45.2 (0.3) | 1.3 (0.2) | 5.74 (1.28) | 49.2 (0.3) | 50.0 (0.4) | 0.8 (0.2) | 3.99 (1.40) |
3.0C | 54.1 (0.3) | 43.8 (0.3) | 2.1 (0.2) | 5.82 (1.19) | 17.2 (0.2) | 81.2 (0.4) | 1.6 (0.2) | 2.80 (0.95) |
3.5C | 52.9 (0.2) | 44.7 (0.2) | 2.4 (0.2) | 5.55 (2.13) | 17.6 (0.2) | 80.3 (0.3) | 2.1 (0.1) | 2.22 (0.41) |
4.0C | 47.4 (0.2) | 49.6 (0.4) | 3.0 (0.3) | 3.23 (0.78) | 13.5 (0.2) | 83.8 (0.3) | 2.7 (0.2) | 2.17 (0.40) |
4.5C | 55.2 (0.2) | 41.4 (0.2) | 3.4 (0.1) | 6.14 (1.78) | 13.2 (0.2) | 83.7 (0.4) | 3.1 (0.1) | 2.06 (0.57) |
5.0C | 51.3 (0.2) | 44.6 (0.3) | 4.1 (0.2) | 4.95 (1.19) | 10.3 (0.2) | 85.9 (0.3) | 3.8 (0.2) | 1.75 (0.36) |
Hardness (GPa) (std. dev.) | Fracture Toughness (MPa.m1/2) (std. dev.) | |||
---|---|---|---|---|
Samples | Dry Mixing | Wet Mixing | Dry Mixing | Wet Mixing |
0.5C | 26.84 (0.85) | 26.27 (0.38) | 2.52 (0.17) | 2.38 (0.09) |
1.0C | 25.45 (0.54) | 27.93 (1.01) | 2.49 (0.19) | 2.26 (0.20) |
1.5C | 26.58 (0.77) | 27.96 (0.83) | 2.56 (0.27) | 2.29 (0.10) |
2.0C | 26.17 (0.30) | 27.75 (0.94) | 2.29 (0.23) | 2.52 (0.09) |
2.5C | 26.94 (0.38) | 27.14 (1.33) | 2.42 (0.25) | 2.52 (0.10) |
3.0C | 26.07 (0.31) | 25.19 (0.63) | 2.35 (0.12) | 2.50 (0.16) |
3.5C | 27.37 (1.15) | 25.61 (0.64) | 2.55 (0.28) | 2.45 (0.11) |
4.0C | 26.67 (1.43) | 25.48 (1.05) | 2.45 (0.12) | 2.40 (0.24) |
4.5C | 25.18 (0.44) | 24.49 (0.33) | 2.35 (0.21) | 2.39 (0.14) |
5.0C | 26.55 (0.53) | 24.06 (0.84) | 2.27 (0.12) | 2.31 (0.14) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaşar, Z.A.; Haber, R.A. Effect of Carbon Addition and Mixture Method on the Microstructure and Mechanical Properties of Silicon Carbide. Materials 2020, 13, 3768. https://doi.org/10.3390/ma13173768
Yaşar ZA, Haber RA. Effect of Carbon Addition and Mixture Method on the Microstructure and Mechanical Properties of Silicon Carbide. Materials. 2020; 13(17):3768. https://doi.org/10.3390/ma13173768
Chicago/Turabian StyleYaşar, Zeynep Aygüzer, and Richard A. Haber. 2020. "Effect of Carbon Addition and Mixture Method on the Microstructure and Mechanical Properties of Silicon Carbide" Materials 13, no. 17: 3768. https://doi.org/10.3390/ma13173768
APA StyleYaşar, Z. A., & Haber, R. A. (2020). Effect of Carbon Addition and Mixture Method on the Microstructure and Mechanical Properties of Silicon Carbide. Materials, 13(17), 3768. https://doi.org/10.3390/ma13173768