Wettability of Asphalt Concrete with Natural and Recycled Aggregates from Sanitary Ceramics
Abstract
:1. Introduction
- Aggregates obtained through secondary crushing of ceramic and glass waste materials;
- Aggregates obtained from crushing or grinding of concrete, debris, and appropriate types of ground materials;
- Aggregates obtained from crushing asphalt surfaces and other road layers;
- Aggregates obtained from the grinding and processing of other materials, such as plastic, rubber, and composites.
2. Materials and Methods
2.1. Material Properties
2.2. Methods
3. Results
4. Discussion
5. Conclusions
- The chemical composition of the ceramic aggregate has a significant influence on the adhesion of asphalt to aggregate’s surface due to the chemical affinity; however, this parameter is not decisive. Waste ceramic aggregate, despite its acidic pH connected with the elevated silica content, exhibits good adhesive properties, which are connected with the electron structure of asphalt; it is also possible to raise the alkalinity and adhesion of this aggregate by increasing the addition of limestone dust or adhesive agents;
- Waste aggregate, owing to its higher compressive strength (about 3–10 times higher than dolomite aggregate), increases the durability of the wearing course produced using the MAM prepared with the WC-1 recipe;
- It is recommended to prepare the MAM with waste ceramic aggregate addition at elevated asphalt heating temperatures (150–160 °C), which reduces the asphalt viscosity, enabling more thorough coverage of the aggregate grains;
- Due to the higher porosity of ceramic aggregate grains, the mixture with the addition of waste aggregate is characterized by higher wettability, which may lead to the leaching of the asphalt binder on the aggregate surface. In order to unequivocally evaluate the long-term effects of this phenomenon on the aggregate surface, further studies should be conducted;
- The surface parameters of the investigated samples describe the results of the physical phenomena involving the filling of an uneven aggregate surface by asphalt. The parameters also explain the influence of aggregate roughness on the adhesion of the asphalt;
- The chemical phenomena and the creation of bonds between the aggregates and the asphalt result from the chemical compositions of aggregates, the pH values of the surfaces of MAM components, and the adsorption of particular ions on the aggregate surfaces.
Author Contributions
Funding
Conflicts of Interest
References
- Carpenter, T. Environment, Construction and Sustainable Development—The Environmental Impact of Construction/Sustainable Civil Engineering; John Wiley & Sons: Chichester, UK, 2001; ISBN 0-471-81311-7. [Google Scholar]
- Medineckienė, M.; Turskis, Z.; Zavadskas, E.K. Sustainable construction taking into account the building impact on the environment. J. Environ. Eng. Landsc. Manag. 2010, 18, 118–127. [Google Scholar] [CrossRef]
- Pervaiz, M.; Sain, M.M. Carbon storage potential in natural fiber composites. Resour. Conserv. Recycl. 2003, 39, 325–340. [Google Scholar] [CrossRef]
- Fořt, J.; Novotný, R.; Trník, A.; Černý, R. Preparation and Characterization of Novel Plaster with Improved Thermal Energy Storage Performance. Energies 2019, 12, 3318. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; McCoy, A.P.; Du, J.; Agee, P.; Lu, Y. Interaction effects of building technology and resident behavior on energy consumption in residential buildings. Energy Build. 2017, 134, 223–233. [Google Scholar] [CrossRef]
- Lee, E.-J.; Pae, M.-H.; Kim, D.-H.; Kim, J.-M.; Kim, J.-Y. Literature Review of Technologies and Energy Feedback Measures Impacting on the Reduction of Building Energy Consumption. In EKC2008 Proceedings of the EU-Korea Conference on Science and Technology; Yoo, S.-D., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 124, pp. 223–228. ISBN 978-3-540-85189-9. [Google Scholar]
- Brzyski, P.; Barnat-Hunek, D.; Suchorab, Z.; Łagód, G. Composite Materials Based on Hemp and Flax for Low-Energy Buildings. Materials 2017, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Pavlík, Z.; Pavlíková, M.; Záleská, M.; Łagód, G.; Suchorab, Z.; Guz, L. Life cycle assessment of the use of sewage sludge as Portland cement replacement. IOP Conf. Ser. Mater. Sci. Eng. 2019, 710, 012038. [Google Scholar] [CrossRef]
- Brzyski, P.; Suchorab, Z. Capillary Uptake Monitoring in Lime-Hemp-Perlite Composite Using the Time Domain Reflectometry Sensing Technique for Moisture Detection in Building Composites. Materials 2020, 13, 1677. [Google Scholar] [CrossRef] [Green Version]
- Brzyski, P.; Grudzińska, M.; Majerek, D. Analysis of the Occurrence of Thermal Bridges in Several Variants of Connections of the Wall and the Ground Floor in Construction Technology with the Use of a Hemp–lime Composite. Materials 2019, 12, 2392. [Google Scholar] [CrossRef] [Green Version]
- Záleská, M.; Pavlík, Z.; Pavlíková, M.; Scheinherrová, L.; Pokorný, J.; Trník, A.; Svora, P.; Fořt, J.; Jankovský, O.; Suchorab, Z.; et al. Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites. Clean Technol. Environ. Policy 2018, 20, 159–171. [Google Scholar] [CrossRef]
- Janssen, G.M.T.; Hendriks, C.F. Sustainable use of recycled materials in building construction. In Advances in Building Technology; Elsevier: Amsterdam, The Netherlands, 2002; pp. 1399–1406. [Google Scholar]
- Treloar, G.J.; Gupta, H.; Love, P.E.D.; Nguyen, B. An analysis of factors influencing waste minimisation and use of recycled materials for the construction of residential buildings. Manag. Environ. Qual. 2003, 14, 134–145. [Google Scholar] [CrossRef]
- Góra, J.; Franus, M.; Barnat-Hunek, D.; Franus, W. Utilization of Recycled Liquid Crystal Display (LCD) Panel Waste in Concrete. Materials 2019, 12, 2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.-H.; Wang, H.-Y.; Jhou, J.-W. Investigating the properties of lightweight concrete containing high contents of recycled green building materials. Constr. Build. Mater. 2013, 48, 98–103. [Google Scholar] [CrossRef]
- Widomski, M.; Gleń, P.; Łagód, G. Sustainable Landfilling As Final Step of Municipal Waste Management System. Probl. Sustain. Dev. 2017, 12, 147–155. [Google Scholar]
- Torkittikul, P.; Chaipanich, A. Utilization of ceramic waste as fine aggregate within Portland cement and fly ash concretes. Cem. Concr. Compos. 2010, 32, 440–449. [Google Scholar] [CrossRef]
- Andrzejuk, W.; Barnat-Hunek, D.; Góra, J. Physical Properties of Mineral and Recycled Aggregates Used to Mineral-Asphalt Mixtures. Materials 2019, 12, 3437. [Google Scholar] [CrossRef] [Green Version]
- Golewski, G.L. Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture. J. Civ. Eng. Manag. 2017, 23, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Yazici, Ş.; Arel, H.Ş. Effects of fly ash fineness on the mechanical properties of concrete. Sadhana 2012, 37, 389–403. [Google Scholar] [CrossRef] [Green Version]
- Woszuk, A. Application of fly ash derived zeolites in warm-mix asphalt technology. Materials 2018, 11, 1542. [Google Scholar] [CrossRef] [Green Version]
- Suchorab, Z.; Barnat-Hunek, D.; Franus, M.; Łagód, G. Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge. Materials 2016, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Woszuk, A.; Bandura, L.; Franus, W. Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J. Clean. Prod. 2019, 235, 493–502. [Google Scholar] [CrossRef]
- Rutkowska, G.; Wichowski, P.; Fronczyk, J.; Franus, M.; Chalecki, M. Use of fly ashes from municipal sewage sludge combustion in production of ash concretes. Constr. Build. Mater. 2018, 188, 874–883. [Google Scholar] [CrossRef]
- Rutkowska, G.; Wichowski, P.; Franus, M.; Mendryk, M.; Fronczyk, J. Modification of Ordinary Concrete Using Fly Ash from Combustion of Municipal Sewage Sludge. Materials 2020, 13, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeDene, C.D.; You, Z.-P. The Performance of Aged Asphalt Materials Rejuvenated with Waste Engine Oil. Int. J. Pavement Res. Technol. 2014, 7, 145–152. [Google Scholar]
- Chen, M.; Leng, B.; Wu, S.; Sang, Y. Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders. Constr. Build. Mater. 2014, 66, 286–298. [Google Scholar] [CrossRef]
- Woszuk, A.; Wróbel, M.; Franus, W. Influence of Waste Engine Oil Addition on the Properties of Zeolite-Foamed Asphalt. Materials 2019, 12, 2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Pavlík, Z.; Fořt, J.; Záleská, M.; Pavlíková, M.; Trník, A.; Medved, I.; Keppert, M.; Koutsoukos, P.G.; Černý, R. Energy-efficient thermal treatment of sewage sludge for its application in blended cements. J. Clean. Prod. 2016, 112, 409–419. [Google Scholar] [CrossRef]
- Senthamarai, R.; Devadas Manoharan, P. Concrete with ceramic waste aggregate. Cem. Concr. Compos. 2005, 27, 910–913. [Google Scholar] [CrossRef]
- Afshinnia, K.; Rangaraju, P.R. Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Constr. Build. Mater. 2016, 117, 263–272. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.-P.; Dai, Q.-L. Performance Evaluation of Asphalt Binder Modified by Bio-oil Generated from Waste Wood Resources. Int. J. Pavement Res. Technol. 2013, 6, 431–439. [Google Scholar]
- Hettiarachchi, C.; Hou, X.; Wang, J.; Xiao, F. A comprehensive review on the utilization of reclaimed asphalt material with warm mix asphalt technology. Constr. Build. Mater. 2019, 227, 117096. [Google Scholar] [CrossRef]
- Kabir, S.; Al-Shayeb, A.; Khan, I.M. Recycled Construction Debris as Concrete Aggregate for Sustainable Construction Materials. Procedia Eng. 2016, 145, 1518–1525. [Google Scholar] [CrossRef] [Green Version]
- WT-2 2014. Mineral-Asphalt Mixtures, Requirements; WT-2: Warsaw, Poland, 2014. [Google Scholar]
- European Committee for Standardization. EN 13108-1: Mineral-Asphalt Mixtures—Requirements—Part 1: Asphalt Concrete; CEN: Brussels, Belgium, 2006. [Google Scholar]
- European Committee for Standardization. EN 12697: Mineral-Asphalt Mixtures—Methods of Testing Hot-Mix Asphalt Mixtures; CEN: Brussels, Belgium, 2015. [Google Scholar]
- Barnat-Hunek, D.; Łagód, G.; Fic, S.; Jarosz-Hadam, M. Effect of Polysiloxanes on Roughness and Durability of Basalt Fibres–Reinforced Cement Mortar. Polymers 2018, 10, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fic, S.B. Adhesion and Self-Organization of the Material Structure in Construction Creating; (Adhezja i Samoorganizacja Struktury Materiału w Tworzeniu Konstrukcji); Lublin University of Technology: Lublin, Poland, 2019; ISBN 978-83-7947-358-8. [Google Scholar]
- Diab, A. Studying viscosity of asphalt binders and effect of varied production temperatures on engineering properties of hot mix asphalt mixtures. Can. J. Civ. Eng. 2017, 44, 1–9. [Google Scholar] [CrossRef]
- Tan, Y.; Guo, M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Constr. Build. Mater. 2013, 47, 254–260. [Google Scholar] [CrossRef]
- Cui, S.; Blackman, B.R.K.; Kinloch, A.J.; Taylor, A.C. Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters. Int. J. Adhes. Adhes. 2014, 54, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Halicka, A.; Ogrodnik, P.; Zegardlo, B. Using ceramic sanitary ware waste as concrete aggregate. Constr. Build. Mater. 2013, 48, 295–305. [Google Scholar] [CrossRef]
- Guerra, I.; Vivar, I.; Llamas, B.; Juan, A.; Moran, J. Eco-efficient concretes: The effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Manag. 2009, 29, 643–646. [Google Scholar] [CrossRef]
- Silvestre, R.; Medel, E.; García, A.; Navas, J. Using ceramic wastes from tile industry as a partial substitute of natural aggregates in hot mix asphalt binder courses. Constr. Build. Mater. 2013, 45, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Medina, C.; Banfill, P.F.G.; Sánchez de Rojas, M.I.; Frías, M. Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mater. 2013, 40, 822–831. [Google Scholar] [CrossRef]
- Andrzejuk, W.; Barnat-Hunek, D.; Siddique, R.; Zegardło, B.; Łagód, G. Application of Recycled Ceramic Aggregates for the Production of Mineral-Asphalt Mixtures. Materials 2018, 11, 658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Declaration of Performance; LOTOS Asfalt: Gdańsk, Poland, 2020.
- Neumann, A.W.; Good, R.J.; Hope, C.J.; Sejpal, M. An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J. Colloid Interface Sci. 1974, 49, 291–304. [Google Scholar] [CrossRef]
- Gaweł, I.; Kalabińska, M.; Piłat, J. Asfalty Drogowe. In WKŁ, Warsaw 2001; Piłat, J., Radziszewski, P., Eds.; Nawierzchnie Asfaltowe, WKŁ: Warsaw, Poland, 2010. [Google Scholar]
- European Committee for Standardization. EN 13302: Bitumen and Bituminous Binders. Determination of Dynamic Viscosity of Bituminous Binder Using a Rotating Spindle Apparatus; CEN: Brussels, Belgium, 2018. [Google Scholar]
- van der Leeden, M.C.; Frens, G. Surface Properties of Plastic Materials in Relation to Their Adhering Performance. Adv. Eng. Mater. 2002, 4, 280–289. [Google Scholar] [CrossRef]
- Baldan, A. Adhesion phenomena in bonded joints. Int. J. Adhes. Adhes. 2012, 38, 95–116. [Google Scholar] [CrossRef]
- Miller, C.M. Adhesion and the Surface Energy Components of Natural Minerals and Aggregates; Texas A&M University: College Station, TX, USA, 2010. [Google Scholar]
- Howson, J.; Amit Bhasin, E.M.; Little, D.; Lytton, R. Comprehensive analysis of surface free energy of asphalts and aggregates and the effects of changes in pH. Constr. Build. Mater. 2011, 25, 2554–2564. [Google Scholar] [CrossRef]
- Yen, T.F.; Chilingarian, G.V. Asphaltenes and Asphalts, 2; Elsevier: Burlington, NJ, USA, 2000; ISBN 978-0-08-086899-8. [Google Scholar]
- Trzaska, E. Kationowe emulsje asfaltowe. Metody wytwarzania, rodzaje i zastosowanie. Nafta-Gaz 2017, 73, 438–445. [Google Scholar] [CrossRef]
- Maeva, E.; Severina, I.; Bondarenko, S.; Chapman, G.; O’Neill, B.; Severin, F.; Maev, R.G. Acoustical methods for the investigation of adhesively bonded structures: A review. Can. J. Phys. 2004, 82, 981–1025. [Google Scholar] [CrossRef]
- Yoon, H.H.; Tarrer, A.T. Effect of Aggregate Properties on Stripping; Transportation Research Board: Washington, WA, USA, 1988; ISSN 0361-1981. ISBN 0309047102. [Google Scholar]
- Bikerman, J.J. The Science of Adhesive Joints; Academic Press: New York, NY, USA, 1961; p. 258. [Google Scholar]
- Minoru, K.; Toshiro, K.; Yuichi, U.; Keitetsu, R. Evaluation of Bond Properties in Concrete Repair Materials. J. Mater. Civ. Eng. 2001, 13, 98–105. [Google Scholar] [CrossRef]
- Kinloch, A.J. The science of adhesion. J. Mater. Sci. 1980, 15, 2141–2166. [Google Scholar] [CrossRef]
- Leftwich, T.; Teplyakov, A. Chemical manipulation of multifunctional hydrocarbons on silicon surfaces. Surf. Sci. Rep. 2008, 63, 1–71. [Google Scholar] [CrossRef]
- Oliviero Rossi, C.; Teltayev, B.; Angelico, R. Adhesion Promoters in Bituminous Road Materials: A Review. Appl. Sci. 2017, 7, 524. [Google Scholar] [CrossRef] [Green Version]
- Larrard de, F. Modern concrete technology. In Concrete Mixture Proportioning: A Scientific Approach; E & FN Spon: London, UK; New York, NY, USA, 1999; ISBN 978-0-419-23500-2. [Google Scholar]
- Liu, S.; Ha, Z. Prediction of random packing limit for multimodal particle mixtures. Powder Technol. 2002, 126, 283–296. [Google Scholar] [CrossRef]
- Kwan, A.K.H.; Chan, K.W.; Wong, V. A 3-parameter particle packing model incorporating the wedging effect. Powder Technol. 2013, 237, 172–179. [Google Scholar] [CrossRef]
- Kwan, A.K.H.; Chen, J.J. Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technol. 2013, 234, 19–25. [Google Scholar] [CrossRef]
- Andrzejuk, W.; Barnat-Hunek, D.; Fic, S.; Styczeń, J. Wettability and Surface Free Energy of Mineral-Asphalt Mixtures with Dolomite and Recycled Aggregate. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 032011. [Google Scholar] [CrossRef]
- Howson, J.E. Relationship between Surface Free Energy and Total Work of Fracture of Asphalt Binder and Asphalt Binder-Aggregate Interfaces; Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
Parameter | Dolomite | Sanitary Ceramics |
---|---|---|
Specific density (g/cm3) | 2.4–2.8 | 2.64 |
Bulk density (g/cm3) | 2.2–2.6 | 2.36 |
Compressive strength (MPa) | 60–180 | 400–600 |
Thermal expansion coefficient (10−5 αt) | 0.3–1.2 | 0.6–0.7 |
Absorptivity (%) | 0.3–1.2 | 1.53 |
Porosity (%) | 1.75–3.0 | >5 |
Parameter | Unit | Value |
---|---|---|
Penetration at 25 °C | 1/10 mm | 50–70 |
Softening point | °C | 46–54 |
Embrittlement temperature | °C | ≤−8 |
Ignition temperature | °C | ≥230 |
Solubility | % m/m | ≥99.0 |
Mass change (absolute value) | % m/m | ≤0.5 |
Remaining penetration at 25 °C | % | ≥50 |
Softening point increase | °C | ≤9 |
Traffic Load | N100—Equivalent Standard Axle Load of 100 kN in the Entire Design Period (in Million 100 kN Axles per Lane) |
---|---|
TL1 | 0.03 < N100 ≤ 0.09 |
TL2 | 0.09 < N100 ≤ 0.50 |
TL3 | 0.50 < N100 ≤ 2.50 |
TL4 | 2.50 < N100 ≤ 7.30 |
TL5 | 7.30 < N100 ≤ 22.00 |
TL6 | 22.00 < N100 ≤ 52.00 |
TL7 | N100 ≥ 52.00 |
Components | WC-1 | WC-2 | ||
---|---|---|---|---|
% Content in | ||||
MM | MAM | MM | MAM | |
Limestone filler | 9 | 8.5 | 6 | 5.6 |
0/2 quartz | 16.0 | 15.0 | 22 | 20.7 |
0/4 ceramics | 14.0 | 13.2 | ||
0/2 dolomite | 11.0 | 10.4 | 22 | 20.7 |
2/8 dolomite | 12.0 | 11.3 | 30 | 28.3 |
4/8 ceramics | 13.0 | 12.2 | ||
8/11 dolomite | 25.0 | 23.6 | 20 | 18.9 |
Bitumen 50/70 | 5.8 | 5.8 | ||
Total | 100 | 100 | 100 | 100 |
Parameter | Unit | 140 °C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Contact Angle | (°) | 57.4 | 56.0 | 59.2 | 56.4 | 57.1 | 58.7 | 58.1 | 56.5 | 58.9 | 56.7 |
Average (°) | 57.5 | ||||||||||
Standard deviation (SD) | 1.09 | ||||||||||
Coefficient of variation (CV) | 0.019 | ||||||||||
Surface Free Energy | (mJ·m−2) | 49.41 | 50.25 | 48.33 | 50.01 | 49.59 | 48.63 | 48.99 | 49.95 | 48.51 | 49.83 |
average (mJ·m−2) | 49.35 | ||||||||||
Standard deviation (SD) | 0.66 | ||||||||||
Coefficient of variation (CV) | 0.013 | ||||||||||
Parameter | Unit | 150 °C | |||||||||
Contact Angle | (°) | 63.1 | 64.7 | 62.7 | 62.5 | 63.8 | 64.8 | 63 | 62.6 | 62.9 | 65.1 |
Average (°) | 63.5 | ||||||||||
Standard deviation (SD) | 0.95 | ||||||||||
Coefficient of variation (CV) | 0.015 | ||||||||||
Surface Free Energy | (mJ·m−2) | 45.97 | 44.99 | 46.21 | 46.33 | 45.54 | 44.93 | 46.03 | 46.27 | 46.09 | 44.75 |
average (mJ·m−2) | 45.71 | ||||||||||
Standard deviation (SD) | 0.58 | ||||||||||
Coefficient of variation (CV) | 0.013 | ||||||||||
Parameter | Unit | 160 °C | |||||||||
Contact Angle | (°) | 69.4 | 66.1 | 67.4 | 67.3 | 70.5 | 66.4 | 67.2 | 68 | 67.8 | 66.2 |
Average (°) | 67.6 | ||||||||||
Standard deviation (SD) | 1.33 | ||||||||||
Coefficient of variation (CV) | 0.019 | ||||||||||
Surface Free Energy | (mJ·m−2) | 42.1 | 44.13 | 43.33 | 43.39 | 41.42 | 43.95 | 43.46 | 42.96 | 43.09 | 44.07 |
average (mJ·m−2) | 43.19 | ||||||||||
Standard deviation (SD) | 0.82 | ||||||||||
Coefficient of variation (CV) | 0.019 |
Parameter | Unit | 140 °C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Contact Angle | (°) | 74.7 | 76.1 | 74.5 | 75.5 | 76 | 74.2 | 74.3 | 74.1 | 76.2 | 75.6 |
Average (°) | 75.1 | ||||||||||
Standard deviation (SD) | 0.80 | ||||||||||
Coefficient of variation (CV) | 0.011 | ||||||||||
Surface Free Energy | (mJ·m−2) | 38.81 | 37.94 | 38.93 | 38.31 | 38 | 39.12 | 39.06 | 39.18 | 37.87 | 38.25 |
average (mJ·m−2) | 38.55 | ||||||||||
Standard deviation (SD) | 0.50 | ||||||||||
Coefficient of variation (CV) | 0.013 | ||||||||||
Parameter | Unit | 150 °C | |||||||||
Contact Angle | (°) | 79.2 | 80.3 | 79.6 | 80.7 | 79.5 | 80.6 | 78.8 | 80.1 | 80.2 | 78.2 |
Average (°) | 79.7 | ||||||||||
Standard deviation (SD) | 0.77 | ||||||||||
Coefficient of variation (CV) | 0.010 | ||||||||||
Surface Free Energy | (mJ·m−2) | 36 | 35.31 | 35.75 | 35.06 | 35.81 | 35.12 | 36.3 | 35.44 | 35.37 | 36.62 |
average (mJ·m−2) | 35.68 | ||||||||||
Standard deviation (SD) | 0.49 | ||||||||||
Coefficient of variation (CV) | 0.014 | ||||||||||
Parameter | Unit | 160 °C | |||||||||
Contact Angle | (°) | 82.4 | 83.7 | 83.3 | 84.4 | 82.5 | 83.5 | 84.3 | 82.9 | 82.1 | 82.2 |
Average (°) | 83.1 | ||||||||||
Standard deviation (SD) | 0.80 | ||||||||||
Coefficient of variation (CV) | 0.010 | ||||||||||
Surface Free Energy | (mJ·m−2) | 34 | 33.18 | 33.43 | 32.75 | 33.93 | 33.31 | 32.81 | 33.68 | 34.19 | 34.12 |
average (mJ·m−2) | 33.54 | ||||||||||
Standard deviation (SD) | 0.50 | ||||||||||
Coefficient of variation (CV) | 0.015 |
Roughness Characteristics | WC-1 | WC-2 | ||||
---|---|---|---|---|---|---|
Temperature (°C) | 140 | 150 | 160 | 140 | 150 | 160 |
Maximum peak height—Sp (µm) | 132 | 128 | 102 | 99 | 88.2 | 81 |
SD | 0.63 | 0.74 | 0.69 | 0.82 | 0.55 | 0.76 |
CV | 0.017 | 0.013 | 0.019 | 0.14 | 0.020 | 0.011 |
Maximum valley depth—Sv (µm) | 168 | 178 | 170 | 160 | 143 | 136 |
SD | 0.53 | 0.63 | 0.74 | 0.82 | 0.91 | 0.77 |
CV | 0.012 | 0.020 | 0.018 | 0.017 | 0.013 | 0.015 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrzejuk, W.; Szewczak, A.; Fic, S.; Łagód, G. Wettability of Asphalt Concrete with Natural and Recycled Aggregates from Sanitary Ceramics. Materials 2020, 13, 3799. https://doi.org/10.3390/ma13173799
Andrzejuk W, Szewczak A, Fic S, Łagód G. Wettability of Asphalt Concrete with Natural and Recycled Aggregates from Sanitary Ceramics. Materials. 2020; 13(17):3799. https://doi.org/10.3390/ma13173799
Chicago/Turabian StyleAndrzejuk, Wojciech, Andrzej Szewczak, Stanisław Fic, and Grzegorz Łagód. 2020. "Wettability of Asphalt Concrete with Natural and Recycled Aggregates from Sanitary Ceramics" Materials 13, no. 17: 3799. https://doi.org/10.3390/ma13173799
APA StyleAndrzejuk, W., Szewczak, A., Fic, S., & Łagód, G. (2020). Wettability of Asphalt Concrete with Natural and Recycled Aggregates from Sanitary Ceramics. Materials, 13(17), 3799. https://doi.org/10.3390/ma13173799