Validation of a Homogeneous Incremental Centrifugal Liquid Sedimentation Method for Size Analysis of Silica (Nano)particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Materials
2.2. Instrumentation
2.3. Method Development and Optimization
2.4. Method Validation
3. Results
3.1. Precision
3.2. Trueness, LOD, LOQ, Working Range
3.3. Robustness
3.4. Selectivity
3.5. Measurement Uncertainty
4. Discussion
4.1. Method Development and Optimization
4.2. Precision
4.3. Trueness
4.4. Limit of Detection and Limit of Quantification
4.5. Linearity and Calibration
4.6. Robustness
4.7. Selectivity
4.8. Measurement Uncertainty
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
AUC | analytical ultracentrifugation |
CCD | charge-coupled device |
CLS | centrifugal liquid sedimentation |
CRM | certified reference material |
ISO | International Organization for Standardization |
k | coverage factor |
LF | light factor |
LLODd | lower limit of detection, in terms of Stokes diameter |
LLOQd | lower limit of quantification, in terms of Stokes diameter |
MSB | mean squares between groups |
MSW | mean squares within groups |
nr | number of replicates within groups |
PVC | polyvinyl chloride |
RD | relative difference |
RM | reference material |
Rs | resolution factor |
RSDr | relative standard deviation for repeatability |
RSDip | relative standard deviation for intermediate precision |
RSDip* | relative standard deviation for intermediate precision (if MSB < MSW) |
TC | Technical Committee |
ULOQ | upper limit of quantification |
uCRM | uncertainty of certified value |
uprec | precision uncertainty |
ut | trueness uncertainty |
W1/2,1 | width of peak 1 at half-height |
W1/2,2 | width of peak 2 at half-height |
Xc1 | local maximum of peak 1 |
Xc2 | local maximum of peak 2 |
ym | arithmetic average calculated from replicate results |
Δbias | experimental bias |
Appendix A
Performance Parameter | Experiment | Performance Criterion |
---|---|---|
Robustness | Small deliberate changes applied during data acquisition and data analysis (method development) and measurements conducted by two analysts (method validation) | Results not significantly 1 different |
Linearity and calibration | NA | NA |
LLODd/LLOQd/ULOQd | Nested experiments on different types of colloidal silica, mainly varying with respect to particle size (range of 20 nm to 200 nm in diameter) | LLODd: Significant 1 difference and/or relative standard deviation for repeatability (RSDr) ≤ 5.0% LLOQd: Not significantly 1 different and RSDr ≤ 1.5% ULOQd: RSDr ≤ 1.5% |
Working range | Particle size: Nested experiments on different types of colloidal silica RMs, mainly varying with respect to particle size (range of 20 nm to 200 nm in diameter) Particle mass fraction: Dilution series of different silica RMs | Particle size: No significant 1 bias and accurate within ≤ 1.5% Particle mass fraction: One-way ANOVA or t-test, no significant 1 differences |
Selectivity | Mixing of different monodisperse colloidal silica RMs | Reliable measurement of particle populations which differ in size by a factor 4 |
Repeatability and intermediate precision | Nested experiments (i.e., five days with four replicates per day) on different types of colloidal silica RMs, mainly varying with respect to particle size (range of 20 nm to 200 nm in diameter) | One-way ANOVA, RSDr ≤ 1.5%, no significant 1 differences among groups (days) |
Trueness | Nested experiments (i.e., five days with four replicates per day) on different types of colloidal silica CRMs, mainly varying with respect to particle size (range of 20 nm to 80 nm in diameter) | No significant 1 bias |
Measurement uncertainty | Combination of top-down and bottom-up approach | U1 ≤ 15% |
References
- Lux Research. Nanotechnology Update: Corporations up Their Spending as Revenues for Nano-Enabled Products Increase, State of the Market Report. Available online: https://members.luxresearchinc.com/research/report/13748 (accessed on 20 May 2020).
- Foss Hansen, S.; Heggelund, L.R.; Revilla Besora, P.; Mackevica, A.; Boldrin, A.; Baun, A. Nanoproducts—what is actually available to European consumers? Environ. Sci. Nano 2016, 3, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Noorlander, C.W.; Kooi, M.W.; Oomen, A.G.; Park, M.V.D.Z.; Vandebriel, R.J.; Geertsma, R.E. Horizon scan of nanomedicinal products. Nanomedicine 2015, 10, 1599–1608. [Google Scholar] [CrossRef]
- Oberdörster, G.; Stone, V.; Donaldson, K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 2007, 1, 2–25. [Google Scholar] [CrossRef]
- Gupta, R.; Xie, H. Nanoparticles in daily life: Applications, toxicology and regulations. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 209–230. [Google Scholar] [CrossRef]
- Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0528&from=NL (accessed on 27 August 2020).
- Regulation (EU) No 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0745&from= (accessed on 27 August 2020).
- Commission Regulation (EU) 2018/1881 of 3 December 2018 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Annexes I, III, VI, VII, VIII, IX, X, XI, and XII to Address Nanoforms of Substances. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1881&from=EN (accessed on 27 August 2020).
- Commission Recommendation (EU) 2011/696 of 18 October 2011 on the Definition of Nanomaterial. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011H0696&from=EN (accessed on 27 August 2020).
- Buhr, E.; Senftleben, N.; Klein, T.; Bergmann, D.; Gnieser, D.; Frase, C.G.; Bosse, H. Characterization of nanoparticles by scanning electron microscopy in transmission mode. Meas. Sci. Technol. 2009, 20, 7–27. [Google Scholar] [CrossRef]
- Motzkus, C.; Macé, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A.; Dirscherl, K.; Hodoroaba, V.-D.; Popov, I.; Popov, O.; Kuselman, I.; et al. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: An interlaboratory comparison study. J. Nanopart. Res. 2013, 15, 1919. [Google Scholar] [CrossRef]
- De Temmerman, P.-J.; Lammertyn, J.; De Ketelaere, B.; Kestens, V.; Roebben, G.; Verleysen, E.; Mast, J. Measurement uncertainties of size, shape and surface measurements using transmission electron microscopy of near-monodisperse, near-spherical nanoparticles. J. Nanopart. Res. 2014, 16, 2177. [Google Scholar] [CrossRef]
- Braun, A.; Couteau, O.; Franks, K.; Kestens, V.; Lamberty, A.; Linsinger, T.; Roebben, G. Validation of dynamic light scattering and centrifugal liquid sedimentation methods for nanoparticle characterisation. Adv. Powder Technol. 2011, 22, 766–770. [Google Scholar] [CrossRef]
- Varenne, F.; Botton, J.; Merlet, C.; Beck-Broichsitter, M.; Legrand, F.-X.; Vaughtier, C. Standardization and validation of a protocol of size measurements by dynamic light scattering for monodispersed stable nanomaterial characterization. Colloids Surf. A 2015, 486, 124–138. [Google Scholar] [CrossRef]
- Langevin, D.; Raspaud, E.; Mariot, S.; Knyazev, A.; Stocco, A.; Salonen, A.; Luch, A.; Haase, A.; Trouiller, B.; Relier, C.; et al. Towards reproducible measurement of nanoparticle size using dynamic light scattering: Important controls and considerations. NanoImpact 2018, 10, 161–167. [Google Scholar] [CrossRef]
- Kamiti, M.; Boldridge, D.; Ndoping, L.M.; Remsen, E.E. Simultaneous absolute determination of particle size and effective density of submicron colloids by disc centrifuge photosedimentometry. Anal. Chem. 2012, 84, 10526–10530. [Google Scholar] [CrossRef] [PubMed]
- Minelli, C.; Sikora, A.; Garcia-Diez, R.; Sparnacci, K.; Gollwitzer, C.; Krumrey, M.; Shard, A.G. Measuring the size and density of nanoparticles by centrifugal sedimentation and flotation. Anal. Methods 2018, 10, 1725–1732. [Google Scholar] [CrossRef] [Green Version]
- Hole, P.; Silence, K.; Hannell, C.; Maguire, C.M.; Roesslein, M.; Suarez, G.; Capracotta, S.; Magdolenova, Z.; Horev-Azaria, L.; Dybowska, A.; et al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J. Nanopart. Res. 2013, 15, 2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kestens, V.; Bozatzidis, V.; Ramaye, Y.; Roebben, G. Validation of a particle tracking analysis method for the size determination of nano- and microparticles. J. Nanopart. Res. 2017, 19, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuura, Y.; Ouchi, N.; Banno, H.; Nakamura, A.; Kato, H. Accurate size determination of polystyrene latex nanoparticles in aqueous media using a particle tracking analysis method. Colloids Surf. A 2017, 525, 7–12. [Google Scholar] [CrossRef]
- Gong, X.; Park, M.; Parviz, D.; Silmore, K.S.; Gordiichuk, P.; Salem Law, T.T.; Strano, M.S. Single-particle tracking for understanding polydisperse nanoparticle dispersions. Small 2019, 15, 1901468. [Google Scholar] [CrossRef]
- ISO/PRF 21363:2020 Nanotechnologies—Measurements of Particle Size and Shape Distributions by Transmission Electron Microscopy; International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 22412:2017 Particle Size Analysis—Dynamic Light Scattering (DLS); International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 19430:2016 Particle Size Analysis—Particle Tracking Analysis (PTA); International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 13318-1:2001 Determination of Particle Size Distribution by Centrifugal Liquid Sedimentation Methods—Part 1: General Principles and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2001.
- ISO 13318-2:2007 Determination of Particle Size Distribution by Centrifugal Liquid Sedimentation Methods—Part 2: Photocentrifuge Method; International Organization for Standardization: Geneva, Switzerland, 2007.
- Kestens, V.; Coleman, V.A.; De Temmerman, P.-J.; Minelli, C.; Woehlecke, H.; Roebben, G. Improved metrological traceability of particle size values measured with line-start incremental centrifugal liquid sedimentation. Langmuir 2017, 33, 8213–8224. [Google Scholar] [CrossRef] [Green Version]
- Kestens, V.; Coleman, V.A.; Herrmann, J.; Minelli, C.; Shard, A.G.; Roebben, G. Establishing SI-traceability of nanoparticle size values measured with line-start incremental centrifugal liquid sedimentation. Separations 2019, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Planken, K.L.; Cölfen, H. Analytical ultracentrifugation of colloids. Nanoscale 2010, 2, 1849–1869. [Google Scholar] [CrossRef]
- Mehn, D.; Caputo, F.; Rösslein, M.; Calzolai, L.; Saint-Antonin, F.; Courant, T.; Wick, P.; Gilliland, D. Larger or more? Nanoparticle characterisation methods for recognition of dimers. RSC Adv. 2017, 7, 27747–27754. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Kato, H.; Saito, T.; Matsuyama, S.; Kinugasa, S. Precise measurement of the size of nanoparticles by dynamic light scattering with uncertainty analysis. Part. Part Syst. Char. 2008, 25, 31–38. [Google Scholar] [CrossRef]
- Verleysen, E.; Wagner, T.; Lipinski, H.-G.; Kägi, R.; Koeber, R.; Boix-Sanfeliu, A.; De Temmerman, P.-J.; Mast, J. Evaluation of a TEM based approach for size measurement of particulate (nano)materials. Materials 2019, 12, 2274. [Google Scholar] [CrossRef] [Green Version]
- The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics. Available online: https://eurachem.org/index.php/publications/guides/mv (accessed on 22 May 2020).
- ISO/IEC Guide 98-3:2008 Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995); International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO Guide 30:2015 Reference Materials—Selected Terms and Definitions; International Organization for Standardization: Geneva, Switzerland, 2015.
- Detloff, T.; Sobisch, T.; Lerche, D. Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation (concentrated systems). Powder Technol. 2007, 174, 50–55. [Google Scholar] [CrossRef]
- ISO 9276-1:1998 Representation of Results of Particle Size Analysis—Part 1: Graphical Representation; International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 9276-2:2014 Representation of Results of Particle Size Analysis—Part 2: Calculation of Average Particle Sizes/Diameters and Moments from Particle Size Distributions; International Organization for Standardization: Geneva, Switzerland, 2014.
- Lerche, D. Comprehensive characterization of nano- and microparticles by in-situ visualisation of particle movement using advanced sedimentation techniques. KONA Powder Part J. 2019, 36, 156–186. [Google Scholar] [CrossRef] [Green Version]
- Federer, W.T. Non-negative estimators for components of variance. J. R. Statist. Soc. C 1968, 17, 171–174. [Google Scholar] [CrossRef]
- Comparison of a Measurement Result with a Certified Value. Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/erm_application_note_1_en.pdf (accessed on 4 June 2020).
- Snyder, L.R.; Kirkland, J.J.; Dolan, W.J. An Introduction to Modern Liquid Chromatography, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 531–567. [Google Scholar]
- Ramaye, Y.; Kestens, V.; Braun, A.; Linsinger, T.; Held, H.; Roebben, G. The certification of equivalent diameters of silica nanoparticles in aqueous solution: ERM-FD101b. In Certification Report EUR 28362; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- ISO 18747-1:2018 Determination of Particle Density by Sedimentation Methods—Part 1: Isopycnic Interpolation Approach; International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 18747-2:2019 Determination of Particle Density by Sedimentation Methods—Part 2: Multi-Velocity Approach; International Organization for Standardization: Geneva, Switzerland, 2019.
Code | Reference Particle Diameter (nm) | Mass Fraction in Test Sample (g/kg) | Density (g/cm3) | Metrological Status |
---|---|---|---|---|
NS-0020A | 19.8 ± 0.5 | 3.6 | 1.9 | RM |
ERM-FD100 | 20.1 ± 1.3 | 10 | 2.3 | CRM |
ERM-FD304 | 33.0 ± 3.0 | 2.5 | 2.3 | CRM |
NS-0050A | 49.7 ± 1.2 | 1.8 | 1.9 | RM |
ERM-FD101b | 87 ± 8 | 2.5 | 2.0 | CRM |
NS-0100A | 99.1 ± 2.4 | 1.3 | 1.9 | RM |
ERM-FD305 1 | 135 | 1.5 | 2.0 | RM |
ERM-FD306 1 | 135 | 0.1, 0.15, 1.5, 10 | 2.0 | RM |
NS-0150A | 146 ± 4 | 1.3 | 1.9 | RM |
NS-0200A | 206 ± 5 | 1.1 | 1.9 | RM |
ERM-FD102 | 23.9 ± 2.0 and 88 ± 7 | 8.8 | 2.0 | CRM |
Nominal Particle Diameters (nm) | Monodisperse Silica (C)RMs | Total Mass Fraction in Test Sample (g/kg) | Nominal Mass Fraction (g/kg) | ||
---|---|---|---|---|---|
Fraction 1 | Fraction 2 | Fraction 1 | Fraction 2 | ||
135 + 200 | ERM-FD305 | NS-0200A | 1.3 | 1.5 | 1.1 |
100 + 200 | NS-0100A | NS-0200A | 1.2 | 1.3 | 1.1 |
100 + 135 | NS-0100A | ERM-FD305 | 1.4 | 1.3 | 1.5 |
80 + 135 | ERM-FD101b | ERM-FD305 | 2.0 | 2.5 | 1.5 |
80 + 100 | ERM-FD101b | NS-0100A | 1.9 | 2.5 | 1.3 |
50 + 100 | NS-0050A | NS-0100A | 2.6 | 3.9 | 1.3 |
50 + 80 | NS-0050A | ERM-FD101b | 3.2 | 3.9 | 2.5 |
Method Parameters | Parameter Levels |
---|---|
Type of sample | Colloidal silica |
Type of dispersant | Aqueous solution |
Dispersant viscosity | 0.8927 mPa s |
Temperature | 25 °C ± 1 °C |
Particle size 1 | 50 nm to 200 nm |
Particle shape | Equiaxial |
Effective particle density | 1.9 g/cm3 to 2.3 g/cm3 |
Particle mass fraction | 0.1 g/kg to 2.5 g/kg |
Type of PSD | Mono- and bimodal |
Type of signal weighting | Light extinction |
Light factor (LF) | 0.25 to 1.0 |
Angular speed | 4000 rev/min |
Type of cuvette | 2 mm and 10 mm polycarbonate |
Light source | LED 470 nm |
Data acquisition programme | 1 cycle at 15 s interval 47 cycles at 5 s interval 110 cycles at 25 s interval 340 cycles at 150 s interval |
Analysis mode | Constant position |
Background subtraction | Transmission profile of supernatant |
Measurement positions | (123.0 ± 0.5) mm, (125.0 ± 0.5) mm and (127.0 ± 0.5) mm |
Material | Mean Measured Diameter (nm) | RSDr (%) | RSDip (%) | uprec (%) | ||
---|---|---|---|---|---|---|
Median | Harmonic Mean | Mode | ||||
NS-0020A | 17.0 | 17.0 | 17.0 | 2.0 | ND | NA |
ERM-FD100 | 16.3 | 16.3 | 16.3 | 2.8 | 0.1 1 | 1.4 |
ERM-FD304 | 28.3 | 27.8 | 27.4 | 4.9 | 0.9 | 2.6 |
NS-0050A | 45.6 | 45.6 | 45.6 | 0.8 | 0.3 | 0.5 |
ERM-FD101b | 82.9 | 82.9 | 82.9 | 0.2 | <0.1 1 | 0.1 |
NS-0100A | 95.1 | 95.1 | 95.1 | 0.4 | 0.4 | 0.5 |
ERM-FD305 | 142.1 | 140.0 | 137.8 | 0.5 | 0.3 | 0.4 |
NS-0150A | 136.8 | 136.7 | 136.8 | 0.5 | 0.2 | 0.3 |
NS-0200A | 191.7 | 191.3 | 191.0 | 1.0 | 0.5 | 0.7 |
(C)RM | Δm (nm) | umeas (nm) | uCRM (nm) | ut (nm) | RD (%) | Significant Bias 1? |
---|---|---|---|---|---|---|
ERM-FD100 | 3.8 | 0.2 | 0.7 | 0.7 | 19 | Yes |
ERM-FD304 | 5.6 | 0.7 | 1.5 | 1.7 | 17 | Yes |
NS-0050A | 4.1 | NA | NA | NA | 8 | No |
ERM-FD101b | 4.1 | 0.1 | 4.0 | 4.0 | 5 | No |
NS-0100A | 4.0 | NA | NA | NA | 4 | No |
NS-0150A | 9.2 | NA | NA | NA | 6 | No |
NS-0200A | 15.0 | NA | NA | NA | 7 | No |
Parameter | Level | Mode (nm) | Harmonic Mean (nm) | Median (nm) |
---|---|---|---|---|
ERM-FD305 | ||||
Temperature (°C) | 24 | 139.9 | 142.7 | 145.5 |
25 (default) | 139.6 | 142.3 | 144.9 | |
26 | 138.6 | 141.3 1 | 143.8 1 | |
Light factor | 0.25 | 139.1 | 141.2 | 143.9 |
0.7 (default) | 139.6 | 142.3 | 144.9 | |
1.0 | 139.4 | 141.7 | 144.2 | |
Meniscus | First profile | 138.6 | 140.8 | 143.1 |
Middle profile | 138.7 | 140.9 | 143.2 | |
Last profile (default) | 138.6 | 140.8 | 143.1 | |
ERM-FD101b | ||||
Operator | Operator 1 | 82.9 | 82.9 | 82.9 |
Operator 2 | 83.0 | 83.0 | 83.0 | |
ERM-FD102 | ||||
Operator | Operator 1 | 89.2 | 89.0 | 89.8 |
Operator 2 | 86.9 | 89.7 | 90.4 | |
NS-0100A | ||||
Operator | Operator 1 | 94.8 1 | 94.8 1 | 94.8 1 |
Operator 2 | 95.5 1 | 95.5 1 | 95.5 1 |
Sample | Peak 1 (nm) | Peak 2 (nm) | Ratio | Rs |
---|---|---|---|---|
ERM-FD305 + NS-0200A | 133 ± 4 | 196 ± 1 | 1.5 | 4.8 |
NS-0100A + NS-0200A | 101 ± 2 | 195 ± 2 | 1.9 | 7.5 |
NS-0100A + ERM-FD305 | 103 ± 2 | 131 ± 5 | 1.3 | 4.1 |
ERM-FD101b + ERM-FD305 | 88.6 ± 0.4 | 132 ± 2 | 1.5 | 4.6 |
ERM-FD101b + NS0100A | <LOQ | <LOQ | NA | NA |
NS-0050A + NS-0100A | 46.4 ± 0.2 | 94.4 ± 0.2 | 2.0 | 5.9 |
NS-0050A + ERM-FD101b | 51 ± 1 | 83.4 ± 0.5 | 1.6 | 9.5 |
ERM-FD102 | 88 ± 4 | < LOQ | NA | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antúnez Domínguez, J.M.; Ramaye, Y.; Dabrio, M.; Kestens, V. Validation of a Homogeneous Incremental Centrifugal Liquid Sedimentation Method for Size Analysis of Silica (Nano)particles. Materials 2020, 13, 3806. https://doi.org/10.3390/ma13173806
Antúnez Domínguez JM, Ramaye Y, Dabrio M, Kestens V. Validation of a Homogeneous Incremental Centrifugal Liquid Sedimentation Method for Size Analysis of Silica (Nano)particles. Materials. 2020; 13(17):3806. https://doi.org/10.3390/ma13173806
Chicago/Turabian StyleAntúnez Domínguez, Jesús Manuel, Yannic Ramaye, Marta Dabrio, and Vikram Kestens. 2020. "Validation of a Homogeneous Incremental Centrifugal Liquid Sedimentation Method for Size Analysis of Silica (Nano)particles" Materials 13, no. 17: 3806. https://doi.org/10.3390/ma13173806
APA StyleAntúnez Domínguez, J. M., Ramaye, Y., Dabrio, M., & Kestens, V. (2020). Validation of a Homogeneous Incremental Centrifugal Liquid Sedimentation Method for Size Analysis of Silica (Nano)particles. Materials, 13(17), 3806. https://doi.org/10.3390/ma13173806