Material Parameters Identification of Historic Lighthouse Based on Operational Modal Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Lighthouse
2.1.1. Description of the Structure
2.1.2. Dynamic Measurements
2.2. Modal Identification Techniques
2.2.1. Peak Picking Method Based on the Correlation Analysis (PP-CA)
2.2.2. Eigensystem Realization Algorithm (ERA)
2.2.3. Natural Excitation Technique and ERA (NExT-ERA)
2.3. Numerical Model of the Lighthouse
3. Results
3.1. Modal Identification
3.2. FEM Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rainieri, C.; Fabbrocino, G. Operational Modal Analysis of Civil Engineering Structures; Springer: New York, NY, USA, 2014. [Google Scholar]
- Brincker, R.; Ventura, C. Introduction to Operational Modal Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Brownjohn, J.M.W.; Raby, A.; Bassitt, J.; Antonini, A.; Hudson, E.; Dobson, P. Experimental modal analysis of British rock lighthouses. Mar. Struct. 2018, 62, 1–22. [Google Scholar] [CrossRef]
- Ivorra, S.; Pallarés, F.J. Dynamic investigations on a masonry bell tower. Eng. Struct. 2006, 28, 660–667. [Google Scholar] [CrossRef]
- Diaferio, M.; Foti, D.; Giannoccaro, N.I.; Ivorra, S. Model updating based on the dynamic identification of a baroque bell tower. Int. J. Saf. Secur. Eng. 2017, 7, 519–531. [Google Scholar] [CrossRef]
- Ubertini, F.; Comanducci, G.; Cavalagli, N. Vibration-based structural health monitoring of a historic bell-tower using output-only measurements and multivariate statistical analysis. Struct. Heal. Monit. 2016, 15, 438–457. [Google Scholar] [CrossRef]
- Azzara, R.M.; Girardi, M.; Iafolla, V.; Lucchesi, D.M.; Padovani, C.; Pellegrini, D. Ambient Vibrations of Age-old Masonry Towers: Results of Long-term Dynamic Monitoring in the Historic Centre of Lucca. Int. J. Archit. Herit. 2019, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, A.; Szymczak, C. Identification of the Vistula Mounting tower model using measured modal data. Eng. Struct. 2012, 42, 342–348. [Google Scholar] [CrossRef]
- Bendat, J.; Piersol, A. Engineering Applications of Correlation and Spectral Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Tomaszewska, A. Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature. Comput. Struct. 2010, 88, 154–164. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Szafranski, M. Study on applicability of two modal identification techniques in irrelevant cases. Arch. Civ. Mech. Eng. 2020, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Brownjohn, J.M.W. Ambient vibration studies for system identification of tall buildings. Earthq. Eng. Struct. Dyn. 2003, 32, 71–95. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Omenzetter, P.; Beskhyroun, S. Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations. Eng. Struct. 2017, 151, 839–860. [Google Scholar] [CrossRef]
- Maia, N.M.M.; Montalvao Silva, J.M.M. Theoretical and Experimental Modal Analysis, 1st ed.; Research Studies Press Ltd.: Baldock, UK, 1998. [Google Scholar]
- Juang, J.-N.; Pappa, R.S. An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 1985, 8, 620–627. [Google Scholar] [CrossRef]
- Juang, J.-N. Applied System Identification; Prentice-Hall PTR: Englewood Clifs, NJ, USA, 1994. [Google Scholar]
- Rusinski, E.; Dragan, S.; Moczko, P.; Pietrusiak, D. Implementation of experimental method of determining modal characteristics of surface mining machinery in the modernization of the excavating unit. Arch. Civ. Mech. Eng. 2012, 12, 471–476. [Google Scholar] [CrossRef]
- Szafranski, M. Dynamics of the small-span railway bridge under moving loads. MATEC Web. Conf. 2019, 262, 1–8. [Google Scholar] [CrossRef]
- Szafrański, M. A dynamic vehicle-bridge model based on the modal identification results of an existing EN57 train and bridge spans with non-ballasted tracks. Mech. Syst. Signal Pr. 2021, 146, 107039–107056. [Google Scholar] [CrossRef]
- Bernagozzi, G.; Mukhopadhyay, S.; Betti, R.; Landi, L.; Diotallevi, P.P. Output-only damage detection in buildings using proportional modal flexibility-based deflections in unknown mass scenarios. Eng. Struct. 2018, 167, 549–566. [Google Scholar] [CrossRef]
- Binczyk, M.; Kalitowski, P.; Szulwic, J.; Tysiac, P. Nondestructive testing of the miter gates using various measurement methods. Sensors (Switzerland) 2020, 20, 1749. [Google Scholar] [CrossRef] [Green Version]
- James, G.; Carne, T.; Lauffer, J. The natural excitation technique (NExT) for modal parameter extraction from operating structures. Modal Anal. Int. J. Anal. Exp. Modal Anal. 1995, 10, 260. [Google Scholar]
- Siringoringo, D.M.; Fujino, Y. System identification of suspension bridge from ambient vibration response. Eng. Struct. 2008, 30, 462–477. [Google Scholar] [CrossRef]
- Nayeri, R.D.; Tasbihgoo, F.; Wahbeh, M.; Caffrey, J.P.; Masri, S.F.; Conte, J.P.; Elgamal, A. Study of time-domain techniques for modal parameter identification of a long suspension bridge with dense sensor arrays. J. Eng. Mech. 2009, 135, 669–683. [Google Scholar] [CrossRef]
- Caicedo, J.M. Practical guidelines for the natural excitation technique (NExT) and the eigensystem realization algorithm (ERA) for modal identification using ambient vibration. Exp. Tech. 2011, 35, 52–58. [Google Scholar] [CrossRef]
- Hosseini Kordkheili, S.A.; Momeni Massouleh, S.H.; Hajirezayi, S.; Bahai, H. Experimental identification of closely spaced modes using NExT-ERA. J. Sound Vib. 2018, 412, 116–129. [Google Scholar] [CrossRef]
- Habbit, D.; Karlsson, B.; Sorensen, P. ABAQUS Analysis User’s Manual; Hibbit, Karlsson, Sorensen Inc.: Providence, RI, USA, 1997. [Google Scholar]
- Karagianni, A.; Karoutzos, G.; Ktena, S.; Vagenas, N.; Vlachopoulos, I.; Sabatakakis, N.; Koukis, G. Elastic properties of rocks. Bull. Geol. Soc. Greece 2010, 43, 1539–1548. [Google Scholar] [CrossRef]
- Zanotti Fragonara, L.; Boscato, G.; Ceravolo, R.; Russo, S.; Ientile, S.; Pecorelli, M.L.; Quattrone, A. Dynamic investigation on the Mirandola bell tower in post-earthquake scenarios. Bull Earthq. Eng. 2017, 15, 313–337. [Google Scholar] [CrossRef] [Green Version]
- Bull, J.W. Computational Modelling of Masonry, Brickwork and Blockwork Structures; Saxe-Coburg Publications: Stirling, UK, 2001. [Google Scholar]
- Russo, G.; Bergamo, O.; Damiani, L.; Lugato, D. Experimental analysis of the “Saint Andrea” Masonry Bell Tower in Venice. A new method for the determination of “Tower Global Young’s Modulus E”. Eng. Struct. 2010, 32, 353–360. [Google Scholar] [CrossRef]
- Gentile, C.; Saisi, A. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr. Build. Mater. 2007, 21, 1311–1321. [Google Scholar] [CrossRef]
- Smoljanović, H.; Nikolić, Ž.; Živaljić, N. A finite-discrete element model for dry stone masonry structures strengthened with steel clamps and bolts. Eng. Struct. 2015, 90, 117–129. [Google Scholar] [CrossRef]
- Arêde, A.; Almeida, C.; Costa, C.; Costa, A. In-situ and lab tests for mechanical characterization of stone masonry historical structures. Constr. Build. Mater. 2019, 220, 503–515. [Google Scholar] [CrossRef]
Method | Natural Frequency—First Mode (Hz) | Natural Frequency—Second Mode (Hz) | Damping Coefficient |
---|---|---|---|
Peak Picking | 2.24 | 2.80 | - |
NExT-ERA | 2.25 | 2.74 | 0.0226 |
ERA | 2.26 | 2.78 | 0.0244 |
Numerical | 2.23 | 2.81 | - |
Material | Initial Elastic Modulus (GPa) | Final Elastic Modulus (GPa) | Poisson’s Ratio | Initial Density (kg/m3) | Final Density (kg/m3) |
---|---|---|---|---|---|
Brick masonry | 1 | 2.4 | 0.167 | 2200 | 2100 |
Sandstone | 10 | 2.4 | 0.2 | 2400 | 2100 |
Granite | 80 | 26 | 0.3 | 2600 | 2000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaszewska, A.; Drozdowska, M.; Szafrański, M. Material Parameters Identification of Historic Lighthouse Based on Operational Modal Analysis. Materials 2020, 13, 3814. https://doi.org/10.3390/ma13173814
Tomaszewska A, Drozdowska M, Szafrański M. Material Parameters Identification of Historic Lighthouse Based on Operational Modal Analysis. Materials. 2020; 13(17):3814. https://doi.org/10.3390/ma13173814
Chicago/Turabian StyleTomaszewska, Agnieszka, Milena Drozdowska, and Marek Szafrański. 2020. "Material Parameters Identification of Historic Lighthouse Based on Operational Modal Analysis" Materials 13, no. 17: 3814. https://doi.org/10.3390/ma13173814
APA StyleTomaszewska, A., Drozdowska, M., & Szafrański, M. (2020). Material Parameters Identification of Historic Lighthouse Based on Operational Modal Analysis. Materials, 13(17), 3814. https://doi.org/10.3390/ma13173814