Is There a Role for Absorbable Metals in Surgery? A Systematic Review and Meta-Analysis of Mg/Mg Alloy Based Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Criteria and Type of Study
2.1.1. Protocol and Registration
2.1.2. Eligibility Criteria
- Population: Patients undergoing surgical treatment of bone fractures or deformities with fixation devices.
- Intervention: Fixation using conventional metal plates and/or screws, such as Ti alloys.
- Comparison: Fixation using absorbable metal plates and/or screws (Mg).
- Outcome: Survival rates of the fixation systems, systemic complications, pain scale, quality of life, and functional analysis.
2.2. Inclusion/Exclusion Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Study Search Strategy
2.4. Searches
2.5. Data Collection Process
2.6. Items to Be Extracted
2.7. Assessment of Study Quality and Risk of Bias
2.8. Types of Outcomes
2.8.1. Primary Outcome
2.8.2. Secondary Outcome
2.8.3. Additional Analysis
2.9. Meta-Analysis
Summary Measures
3. Results
3.1. Qualitative Analysis
3.2. Experimental Design
3.3. Patient Selection
3.4. Operated Region
3.5. Type of Screws
3.6. Surgery Time
3.7. Radiologic Measures
3.8. Follow-Up
3.9. Functional Recovery
3.10. Laboratory Results
3.11. Complications
4. Quantitative Analysis (Meta-Analysis)
4.1. Primary Outcomes
4.1.1. Complications in the Absorbable Mg Screws vs. Control Group
4.1.2. Complications in the Absorbable Mg Screw vs. Ti Screw Group and Hallux Valgus Deformity Surgery
4.1.3. Failure in the Mg vs. Absorbable Screw Group Control (Ti Screw and Region: Hallux Valgus Deformity)
4.1.4. The Event Rate for Complications in Absorbable Mg Screw-In Operated Patients
4.1.5. Event Rate for Absorbable Mg Screw Failure in Operated Patients
4.2. Risk of Bias in the Studies
4.3. Study Quality and Risk of Bias
Non-Randomized Studies
4.4. Randomized Studies
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dupaix, J.P.; Opanova, M.I.; Elston, M.J.; Lee, L.S. A Comparison of Skeletal Injuries Arising from Moped and Motorcycle Collisions. Hawaii J. Health Soc. Welf. 2019, 78, 311–315. [Google Scholar] [PubMed]
- Kudo, D.; Miyakoshi, N.; Hongo, M.; Kasukawa, Y.; Ishikawa, Y.; Ishikawa, N.; Shimada, Y. An epidemiological study of traumatic spinal cord injuries in the fastest aging area in Japan. Spinal Cord 2019, 57, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Getzmann, J.M.; Slankamenac, K.; Sprengel, K.; Mannil, L.; Giovanoli, P.; Plock, J.A. The impact of non-thermal injuries in combined burn trauma: A retrospective analysis over the past 35 years. J. Plast. Reconstr. Aesthetic Surg. 2019, 72, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, J.P.M.; Pitteloud, C.; Klukowska-Rötzler, J.; Exadaktylos, A.K.; Iizuka, T.; Schaller, B. Changing trends in epidemiology and management of facial trauma in a Swiss geriatric population. Gerodontology 2019, 36, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulos, P.; Igoumenakis, D.; Mezitis, M.; Rallis, G. Blindness after facial trauma: Epidemiology, incidence and risk factors: A 27-year cohort study of 5708 patients. Oral Surgery Oral Med. Oral Pathol. Oral Radiol. 2018, 126, 129–133. [Google Scholar] [CrossRef]
- Chagnon, M.; Guy, L.-G.; Jackson, N. Evaluation of Magnesium-based Medical Devices in Preclinical Studies: Challenges and Points to Consider. Toxicol. Pathol. 2019, 47, 390–400. [Google Scholar] [CrossRef]
- Choo, J.T.; Lai, S.H.S.; Ying, C.T.Q.; Thevendran, G. Magnesium-based bioabsorbable screw fixation for hallux valgus surgery—A suitable alternative to metallic implants. Foot Ankle Surg. 2019, 25, 727–732. [Google Scholar] [CrossRef]
- Brucoli, M.; Boffano, P.; Romeo, I.; Corio, C.; Benech, A.; Ruslin, M.; Forouzanfar, T.; Jensen, T.S.; Rodríguez-Santamarta, T.; De Vicente, J.C.; et al. Epidemiology of maxillofacial trauma in the elderly: A European multicenter study. J. Stomatol. Oral Maxillofac. Surg. 2019. [Google Scholar] [CrossRef]
- Neto, I.C.P.; Franco, J.M.P.L.; Junior, J.L.D.A.; Santana, M.D.R.; De Abreu, L.C.; Bezerra, I.M.P.; Soares, E.C.S.; Gondim, D.G.D.A.; Rodrigues, L.M.R. Factors Associated With the Complexity of Facial Trauma. J. Craniofacial Surg. 2018, 29, e562–e566. [Google Scholar] [CrossRef]
- Plaass, C.; Von Falck, C.; Ettinger, S.; Sonnow, L.; Calderone, F.; Weizbauer, A.; Reifenrath, J.; Claassen, L.; Waizy, H.; Daniilidis, K.; et al. Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies—3 year results of a randomized clinical trial. J. Orthop. Sci. 2018, 23, 321–327. [Google Scholar] [CrossRef]
- Zhao, D.W.; Huang, S.; Lu, F.; Wang, B.; Yang, L.; Qin, L.; Yang, K.; Li, Y.; Li, W.; Wang, W.; et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials 2016, 81, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Kasai, T.; Matsumoto, T.; Iga, T.; Tanaka, S. Complications of implant removal in ankle fractures. J. Orthop. 2019, 16, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Schepers, T.; Van Lieshout, E.M.; De Vries, M.R.; Van Der Elst, M. Complications of syndesmotic screw removal. Foot Ankle Int. 2011, 32, 1040–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukegawa, S.; Kanno, T.; Matsumoto, K.; Sukegawa-Takahashi, Y.; Masui, M.; Furuki, Y. Complications of a poly-l-lactic acid and polyglycolic acid osteosynthesis device for internal fixation in maxillofacial surgery. Odontology 2018, 106, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Fage, S.W.; Muris, J.; Jakobsen, S.S.; Thyssen, J.P. Titanium: A review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermat. 2016, 74, 323–345. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hu, Y.; Yuan, Q.; Yu, J.; Wu, X.; Du, Z.; Wu, X.; Hu, J. Association between metal hypersensitivity and implant failure in patients who underwent titanium cranioplasty. J. Neurosurg. 2019, 131, 40–46. [Google Scholar] [CrossRef]
- Chen, X.; Giambini, H.; Ben-Abraham, E.; An, K.-N.; Nassr, A.; Zhao, C. Effect of Bone Mineral Density on Rotator Cuff Tear: An Osteoporotic Rabbit Model. PLoS ONE 2015, 10, e0139384. [Google Scholar] [CrossRef]
- Seitz, J.-M.; Durisin, M.; Goldman, J.; Drelich, J.W. Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Adv. Healthc. Mater. 2015, 4, 1915–1936. [Google Scholar] [CrossRef]
- Pelto-Vasenius, K.; Hirvensalo, E.; Vasenius, J.; Rokkanen, P. Osteolytic Changes After Polyglycolide Pin Fixation in Chevron Osteotomy. Foot Ankle Int. 1997, 18, 21–25. [Google Scholar] [CrossRef]
- Clanton, T.O.; Betech, A.A.; Bott, A.M.; Matheny, L.M.; Hartline, B.; Hanson, T.W.; McGarvey, W.C. Complications After Tendon Transfers in the Foot and Ankle Using Bioabsorbable Screws. Foot Ankle Int. 2013, 34, 486–490. [Google Scholar] [CrossRef]
- Plaass, C.; Ettinger, S.; Sonnow, L.; Koenneker, S.; Noll, Y.; Weizbauer, A.; Reifenrath, J.; Claassen, L.; Daniilidis, K.; Stukenborg-Colsman, C.; et al. Early results using a biodegradable magnesium screw for modified chevron osteotomies. J. Orthop. Res. 2016, 34, 2207–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E Atkinson, H.D.; Khan, S.; Lashgari, Y.; Ziegler, A. Hallux valgus correction utilising a modified short scarf osteotomy with a magnesium biodegradable or titanium compression screws—A comparative study of clinical outcomes. BMC Musculoskelet. Disord. 2019, 20, 334. [Google Scholar] [CrossRef] [PubMed]
- Willbold, E.; Weizbauer, A.; Loos, A.; Seitz, J.-M.; Angrisani, N.; Windhagen, H.; Reifenrath, J. Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations. J. Biomed. Mater. Res. Part A 2016, 105, 329–347. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Piao, Y.; Wufuer, M.; Son, W.-C.; Choi, T.H. Biocompatibility and Efficiency of Biodegradable Magnesium-Based Plates and Screws in the Facial Fracture Model of Beagles. J. Oral Maxillofac. Surg. 2018, 76, 1055.e1–1055.e9. [Google Scholar] [CrossRef] [PubMed]
- Naujokat, H.; Seitz, J.-M.; Açil, Y.; Damm, T.; Möller, I.; Gülses, A.; Wiltfang, J. Osteosynthesis of a cranio-osteoplasty with a biodegradable magnesium plate system in miniature pigs. Acta Biomater. 2017, 62, 434–445. [Google Scholar] [CrossRef]
- Waizy, H.; Diekmann, J.; Weizbauer, A.; Reifenrath, J.; Bartsch, I.; Neubert, V.; Schavan, R.; Windhagen, H. In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months. J. Biomater. Appl. 2013, 28, 667–675. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, S.; Wei, B.; Legut, D.; Germann, T.C.; Zhang, H.; Zhang, R. A generalized solid strengthening rule for biocompatible Zn-based alloys, a comparison with Mg-based alloys. Phys. Chem. Chem. Phys. 2019, 21, 22629–22638. [Google Scholar] [CrossRef]
- Yang, H.; Jia, B.; Zhang, Z.; Qu, X.; Li, G.; Lin, W.; Zhu, D.; Dai, K.; Zheng, Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Dou, J.; Yu, H.; Chen, C. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. J. Biomater. Appl. 2019, 33, 1348–1372. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Dai, J.; Xepapadeas, A.B.; Schweizer, E.; Alexander, D.; Scheideler, L.; Zhou, C.; Zhang, H.; Wan, G.; et al. Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants. Mater. Sci. Eng. C 2019, 103, 109826. [Google Scholar] [CrossRef]
- Hernández-Escobar, D.; Champagne, S.; Yilmazer, H.; Dikici, B.; Boehlert, C.J.; Hermawan, H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater. 2019, 97, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Han, H.-S.; Han, K.-J.; Park, J.; Jeon, H.; Ok, M.-R.; Seok, H.-K.; Ahn, J.-P.; Lee, K.E.; Lee, D.-H.; et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc. Natl. Acad. Sci. USA 2016, 113, 716–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windhagen, H.; Radtke, K.; Weizbauer, A.; Diekmann, J.; Noll, Y.; Kreimeyer, U.; Schavan, R.; Stukenborg-Colsman, C.; Waizy, H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study. Biomed. Eng. Online 2013, 12, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klauser, H. Internal fixation of three-dimensional distal metatarsal I osteotomies in the treatment of hallux valgus deformities using biodegradable magnesium screws in comparison to titanium screws. Foot Ankle Surg. 2018, 25, 398–405. [Google Scholar] [CrossRef]
- Higgins, J.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Version 5.1.0; The Cochrane Collaboration: London, UK, 2011; Available online: www.cochrane-handbook.org (accessed on 7 June 2020).
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Petticrew, M.; Shekell, P.; Stewart, L.A. PRISMA-P Group Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, U.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2020, 1–7. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Santiago, J.; Batista, V.E.D.S.; Verri, F.R.; Honório, H.; De Mello, C.; Almeida, D.; Pellizzer, E.P. Platform-switching implants and bone preservation: A systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 2016, 45, 332–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Atieh, M.; Ibrahim, H.M.; Atieh, A.H. Platform Switching for Marginal Bone Preservation Around Dental Implants: A Systematic Review and Meta-Analysis. J. Periodontol. 2010, 81, 1350–1366. [Google Scholar] [CrossRef]
- de Carvalho Sales-Peres, S.H.; de Azevedo-Silva, L.J.; Bonato, R.C.S.; de Carvalho Sales-Peres, M.; da Silvia Pinto, A.C.; Junior, J.F.S. Coronavirus (Sars-CoV-2) and the risk of obesity for critically illness and ICU admitted: Meta- análise of epidemiological evidence. Obesity Res. Clin. Pract. 2020. [Google Scholar] [CrossRef]
- De Medeiros, F.; Kudo, G.; Leme, B.; Saraiva, P.; Verri, F.R.; Honório, H.; Pellizzer, E.; Junior, J.F.S. Dental implants in patients with osteoporosis: A systematic review with meta-analysis. Int. J. Oral Maxillofac. Surg. 2017, 47, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Leonhardt, H.; Ziegler, A.; Lauer, G.; Franke, A. Osteosynthesis of the Mandibular Condyle With Magnesium-Based Biodegradable Headless Compression Screws Show Good Clinical Results During a 1-Year Follow-Up Period. J. Oral Maxillofac. Surg. 2020. [Google Scholar] [CrossRef]
- Carvalho, M.D.V.; De Moraes, S.L.D.; Lemos, C.A.A.; Junior, J.F.S.; Vasconcelos, B.C.D.E.; Pellizzer, E.P. Surgical versus non-surgical treatment of actinic cheilitis: A systematic review and meta-analysis. Oral Dis. 2018, 25, 972–981. [Google Scholar] [CrossRef]
- Annibali, S.; Bignozzi, I.; Cristalli, M.P.; La Monaca, G.; Graziani, F.; Polimeni, A. Peri-implant marginal bone level: A systematic review and meta-analysis of studies comparing platform switching versus conventionally restored implants. J. Clin. Periodontol. 2012, 39, 1097–1113. [Google Scholar] [CrossRef]
- Deeks, J.J.H.J.; Altman, D.G. Chapter 10: Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions; Version.6.0 (Updated July 2019); Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane: Chichester, UK, 2019; Available online: www.training.cochrane.org/handbook (accessed on 6 June 2020).
- Kania, A.; Nowosielski, R.; Gawlas-Mucha, A.; Babilas, R. Mechanical and Corrosion Properties of Mg-Based Alloys with Gd Addition. Materials 2019, 12, 1775. [Google Scholar] [CrossRef] [Green Version]
- Kubásek, J.; Dvorsky, D.; Šedý, J.; Msallamova, S.; Levorová, J.; Foltán, R.; Vojtěch, D. The Fundamental Comparison of Zn–2Mg and Mg–4Y–3RE Alloys as a Perspective Biodegradable Materials. Materials 2019, 12, 3745. [Google Scholar] [CrossRef] [Green Version]
- Witte, F.; Kaese, V.; Haferkamp, H.; Switzer, E.; Meyer-Lindenberg, A.; Wirth, C.; Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26, 3557–3563. [Google Scholar] [CrossRef]
- Janning, C.; Willbold, E.; Vogt, C.; Nellesen, J.; Meyer-Lindenberg, A.; Windhagen, H.; Thorey, F.; Witte, F. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater. 2010, 6, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Li, R.W.; Kirkland, N.; Truong, J.; Wang, J.; Smith, P.N.; Birbilis, N.; Nisbet, D.R. The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. Part A 2014, 102, 4346–4357. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.W.; Witte, F.M.; Lu, F.; Wang, J.; Li, J.; Qin, L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 2017, 112, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Street, J.; Bao, M.; DeGuzman, L.; Bunting, S.; Peale, F.V.; Ferrara, N.; Steinmetz, H.; Hoeffel, J.; Cleland, J.L.; Daugherty, A.; et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 2002, 99, 9656–9661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizawa, S.; Brown, A.; Barchowsky, A.; Sfeir, C. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014, 10, 2834–2842. [Google Scholar] [CrossRef] [PubMed]
- Saris, N.E.; Mervaala, E.; Karppanen, H.; Khawaja, J.A.; Lewenstam, A. Magnesium: An update on physiological, clinical and analytical aspects. Clin. Chim. Acta. 2000, 294, 1–26. [Google Scholar] [CrossRef]
- Schlingmann, K.P.; Waldegger, S.; Konrad, M.; Chubanov, V.; Gudermann, T. TRPM6 and TRPM7—Gatekeepers of human magnesium metabolism. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2007, 1772, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Witte, F.; Abeln, I.; Switzer, E.; Kaese, V.; Windhagen, H.; Meyer-Lindenberg, A. Evaluation of the skin sensitizing potential of biodegradable magnesium alloys. J. Biomed. Mater. Res. Part A 2008, 86, 1041–1047. [Google Scholar] [CrossRef]
- Zhang, X.-B.; Yuan, G.; Niu, J.; Fu, P.; Ding, W. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg–Nd–Zn–Zr alloy with different extrusion ratios. J. Mech. Behav. Biomed. Mater. 2012, 9, 153–162. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef]
- Diekmann, J.; Bauer, S.; Weizbauer, A.; Willbold, E.; Windhagen, H.; Helmecke, P.; Lucas, A.; Reifenrath, J.; Nolte, I.; Ezechieli, M. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: A pilot in vivo study in rabbits. Mater. Sci. Eng. C 2016, 59, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Seitz, J.-M.; Eifler, R.; Bach, F.-W.; Maier, H.J. Magnesium degradation products: Effects on tissue and human metabolism. J. Biomed. Mater. Res. Part A 2013, 102, 3744–3753. [Google Scholar] [CrossRef]
- Willbold, E.; Gu, X.; Albert, D.; Kalla, K.; Bobe, K.; Brauneis, M.; Janning, C.; Nellesen, J.; Czayka, W.; Tillmann, W.; et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater. 2015, 11, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Lorusso, F.; Staiti, G.; Sinjari, B.; Tampieri, A.; Mortellaro, C. Sinus Augmentation with Biomimetic Nanostructured Matrix: Tomographic, Radiological, Histological and Histomorphometrical Results after 6 Months in Humans. Front. Physiol. 2017, 8, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viehe, R.; Haupt, D.J.; Heaslet, M.W.; Walston, S. Complications of Screw-Fixated Chevron Osteotomies for the Correction of Hallux Abducto Valgus. J. Am. Podiatr. Med Assoc. 2003, 93, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Hanft, J.R.; Kashuk, K.B.; Bonner, A.C.; Toney, M.; Schabler, J. Rigid internal fixation of the Austin/Chevron osteotomy with Herbert screw fixation: A retrospective study. J. Foot Surg. 1992, 31, 512–518. [Google Scholar]
- Trnka, H.-J.; Zembsch, A.; Easley, M.E.; Salzer, M.; Ritschl, P.; Myerson, M.S. The chevron osteotomy for correction of hallux valgus. Comparison of findings after two and five years of follow-up. JBJS 2000, 82, 1373–1378. [Google Scholar] [CrossRef]
- Stoustrup, P.; Kristensen, K.D.; Küseler, A.; Herlin, T.; Pedersen, T.K. Normative values for mandibular mobility in Scandinavian individuals 4–17 years of age. J. Oral Rehabil. 2016, 43, 591–597. [Google Scholar] [CrossRef]
- Xiang, G.-L.; Long, X.; Deng, M.-H.; Han, Q.-C.; Meng, Q.-G.; Li, B. A retrospective study of temporomandibular joint ankylosis secondary to surgical treatment of mandibular condylar fractures. Br. J. Oral Maxillofac. Surg. 2014, 52, 270–274. [Google Scholar] [CrossRef]
- Rangdal, S.; Singh, D.; Joshi, N.; Soni, A.; Sament, R. Functional outcome of ankle fracture patients treated with biodegradable implants. Foot Ankle Surg. 2012, 18, 153–156. [Google Scholar] [CrossRef]
- An, J.; Jia, P.; Zhang, Y.; Gong, X.; Han, X.; He, Y. Application of biodegradable plates for treating pediatric mandibular fractures. J. Cranio-Maxillofac. Surg. 2015, 43, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Luthringer, B.; Witte, F.M.; Willumeit-Römer, R. Magnesium-based implants: A mini-review. Magnes. Res. 2014, 27, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Article | Type of Study | Number of Patients | Age (Mean in Years) | Sex (M or F) | Operated Region | Type of Screw | Number of Screws | Surgery Time (Min) | Follow Up (Months) |
---|---|---|---|---|---|---|---|---|---|
Windhagen et al. | Randomized Clinical Trial | 26 (13 Mg; 13 Ti) | 57.2 ± 7.2 Mg; 49.9 ± 16.5 Ti | 11 m. 2 f. (Mg); 13 m. 0 f. (Ti) | Hallux | Mg; Ti | 26 (13 (Mg); 13 (Ti)) | 40 ± 9.1 (Mg); 34 ± 3.3 (Ti) | 6 |
Klauser | Retrospective | 200 (100 Mg; 100 Ti) | 52.34 (Mg); 50.87 (Ti) | NR | Hallux | Mg; Ti | 200 (100 (Mg); 100 (Ti)) | 60.6 (Mg); 55.6 (Ti) | 12.2 Mg; 11.7 Ti |
Atkinson et al. | Case control study | 36 (11 Mg; 25 Ti) | 38 (Mg); 41 (Ti) | 2 M., 9 F. (Mg); 2 M., 23 F. (Ti) | Hallux | Mg; Ti | 36 (11 (Mg); 25 (Ti)) | 35 (Mg); 34 (Ti) | 19 (12–30) |
Choo et al. | Case control study | 93 (24 Mg; 69 Ti) | 54.5 ± 12 (Mg-Ti) | M.:1, F.:23 (Mg) | Hallux | Mg; Ti | 93 (24 (Mg); 69 (Ti)) | NR | 12 |
Plaass et al. | Prospective case series | 45 (Mg) | 45.5 ± 10.6: 19.6–68.2 | 45 (2 m., 43 fe.) | Hallux | Mg | 45 | NR | 12 |
Plaass et al. | Randomized Clinical Trial | 14 (8 Mg; 6 Ti) | 56 ± 8.9 (Mg); 52 ± 9.0 (Ti) | 14 f. (Mg-Ti) | Hallux | Mg; Ti | 14 (8 (Mg); 6 (Ti)) | NR | 36 |
Zhao et al. | Randomized Clinical Trial | 48 (23 Mg; 25 C.) | 30 ± 7 (Mg); 33 ± 8 (C.) | 9 f./14 m. (Mg); 10 f./15 m. (c.) | femoral head | Mg | 23 Mg | NR | 12 |
Leonhardt et al. | Prospective case series | 6 (Mg) | 43.2: 30–66 | 4 m.; 2 f. | Mandibular condyle | Mg | 6 Mg | NR | 12 |
Article | Radiologic Measures | Functional Recovery | Laboratory | Complications |
---|---|---|---|---|
Windhagen et al. | Correct placement of the implants and early signs of union and bone healing | all healed patients | No * | MgG(two patients had problems in healing) TiG (one patient had problems in healing; one patient had exposure of screw head) |
Klauser | TiG. (All postoperative radiographs were satisfied.); Mg group: 60% of the radiographs as satisfy. and 40% with some alteration | There was no difference between groups (Mg group 3% vs. Ti group 4%) | NR | MgG (one broken screw; three patients with superficial infection; two patients with deep infection) TiG (one patient had prominence of the screw; four patients with superficial infections; one patient deep infection) |
Atkinson et al. | No radiographic changes. | Mg—Improvement in postoperative results | NR | MgG (There were no post-operative complications of intraoperative technical) |
Choo et al. | No radiographic changes of the screws in any group | The Ti group shows better results compared to the Mg group | NR | MgG (three cases of infection; one case of local pain) TiG (three cases of cellulite; one case of regional pain; one patient had implant removed) |
Plaass et al. | The x-rays showed a significant improvement of all; Radiographic signs of bony healing | Improvement in postoperative results was observed | NR | Five patients (early implant disintegration, dislocation, radiolucency’s, or pain); two patients of early disintegration; seven patients showed functional problems after surgery) |
Plaass et al. | There was no difference between the study groups regarding fracture repair | No difference regarding the rehabilitation of patients | NR | MgG no complications TiG (two patients’ pain during running; three patients had residual pain) |
Zhao et al. | The tom. shows an increase in bone density compared to the control group | Favorable results for the Mg group compared to the CG | No * | There were no complications associated with the Mg group |
Leonhardt et al. | Adequate repair of fractures was observed at 6-months postoperative tomography | All patients had experienced excellent restoration of their occlusion, and no revisions were required. | NR | No postoperative complications were reported |
Studies | Randomization | Sample Size Calculation | Suggestions | Limitation |
---|---|---|---|---|
Atkinson et al., 2019 | No | No | Learning curve and multicentric studies | Sample not standardized before experiment |
Choo et al., 2019 | No | Yes | Higher sample | Largest sample; different screw sizes |
Klauser et al., 2018 | No | No | Higher sample | Short follow-up |
Leonhardt et al., 2020 | No | No | Higher sample and control group | Sample and comparison group |
Plaass et al., 2016 | No | No | Higher sample and follow-up | Reduced sample, short follow-up, absent of a control group |
Plaass et al., 2017 | Yes, but there was no description of the technique. | No | Learning curve | Reduced sample, data making some analyzes impossible |
Windhagen et al., 2013 | Yes. There was no description of the technique, but there was extern monitoring. | No | NR | Short follow-up, and some considerations related to the assessment of the screws and radiological images |
Zhao et al., 2016 | Sim | No | More multicentric studies | Consider etiological and other systemic factors |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukotjo, C.; Lima-Neto, T.J.; Santiago Júnior, J.F.; Faverani, L.P.; Miloro, M. Is There a Role for Absorbable Metals in Surgery? A Systematic Review and Meta-Analysis of Mg/Mg Alloy Based Implants. Materials 2020, 13, 3914. https://doi.org/10.3390/ma13183914
Sukotjo C, Lima-Neto TJ, Santiago Júnior JF, Faverani LP, Miloro M. Is There a Role for Absorbable Metals in Surgery? A Systematic Review and Meta-Analysis of Mg/Mg Alloy Based Implants. Materials. 2020; 13(18):3914. https://doi.org/10.3390/ma13183914
Chicago/Turabian StyleSukotjo, Cortino, Tiburtino J. Lima-Neto, Joel Fereira Santiago Júnior, Leonardo P. Faverani, and Michael Miloro. 2020. "Is There a Role for Absorbable Metals in Surgery? A Systematic Review and Meta-Analysis of Mg/Mg Alloy Based Implants" Materials 13, no. 18: 3914. https://doi.org/10.3390/ma13183914
APA StyleSukotjo, C., Lima-Neto, T. J., Santiago Júnior, J. F., Faverani, L. P., & Miloro, M. (2020). Is There a Role for Absorbable Metals in Surgery? A Systematic Review and Meta-Analysis of Mg/Mg Alloy Based Implants. Materials, 13(18), 3914. https://doi.org/10.3390/ma13183914