Comparison of Tensile Properties of Glass Fibre Reinforced Polymer Rebars by Testing According to Various Standards
Abstract
:1. Introduction
2. Research Significance
3. Materials and Methods
3.1. GFRP Bars
3.2. Effective Bar Diameter
3.3. Specimen Preparation
3.4. Test Procedure
4. Test Results
4.1. Load-Strain Behaviour
4.2. Failure Modes
4.3. Tensile Strength
4.4. Modulus of Elasticity
4.5. Ultimate Strain
5. Discussion
5.1. Comparison of Tensile Properties of Bar Types
5.2. Influence of Bar Diameter on Tensile Properties
5.3. Influence of Manufacturing Factors on Tensile Properties
5.4. Comparison of Test Standards
6. Summary and Conclusions
- Due to the existence of two standard methods for bar diameter determination, the difference between “core” and “effective” diameters and relevant cross-sectional areas are in the range of 1.8%–7.2% and 3.6%–13.9%, respectively. This brings in considerable differences to the calculation of tensile strength and modulus of elasticity through bar cross-sectional area.
- The rebars from different manufactures vary in the extent of tensile properties. The highest values of tensile strength and modulus of elasticity were determined for C type bars, while the lowest for B type bars. The difference between these two types of bars for both parameters is about 20%. It is mainly due to fibre content.
- No clear influence of bar diameter on the tensile properties of GFRP bare was determined. However, the trend lines show the proportional increase of tensile strength and modulus of elasticity for A type bars and constant values for B type, while the decreasing impact on ultimate strain was observed.
- Tensile properties of A type bars stay invariable in a different batch of manufacturing. The type of resin for B type bars had no significant impact on tensile properties but influenced data variation.
- For the determination of GFRP bars’ tensile properties, the following conditions should be taken into account: cross-sectional properties based on core diameter, the start/end points at the load–strain curve in the range of 20%–60% of the ultimate tensile load for modulus of elasticity determination, and Method II for ultimate strain determination.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- GangaRao, H.V.S.; Taly, N.; Vijay, P.V. Reinforced Concrete Design with FRP Composites; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Nanni, A.; De Luca, A.; Jawaheri, Z.H. Reinforced Concrete with FRP Bars: Mechanics and Design; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Singh, S.B. Analysis and Design of FRP Reinforced Concrete Structures; McGraw Hill Professional: New York, NY, USA, 2015. [Google Scholar]
- Nolan, S.; Nanni, A. Deployment of Composite Reinforcing. Part 1: Impetus for more widespread application in transportation infrastructure. Concr. Int. 2017, 39, 40–46. [Google Scholar]
- Bouguerra, K.; Ahmed, E.A.; El–Gamal, S.; Benmokrane, B. Testing of full–scale concrete bridge deck slabs reinforced with fiber–reinforced polymer (FRP) bars. Constr. Build. Mater. 2011, 25, 3956–3965. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, G.; Pan, Y. Investigation of ultimate strengths of concrete bridge deck slabs reinforced with GFRP bars. Constr. Build. Mater. 2012, 28, 482–492. [Google Scholar] [CrossRef]
- Holden, K.M.; Pantelides, C.P.; Reaveley, L.D. Bridge Constructed with GFRP–Reinforced Precast Concrete Deck Panels: Case Study. J. Bridge Eng. 2014, 19, 05014001. [Google Scholar] [CrossRef]
- Gooranorimi, O.; Nanni, A. GFRP Reinforcement in Concrete after 15 Years of Service. J. Compos. Constr. 2017, 21, 04017024. [Google Scholar] [CrossRef]
- Wiater, A.; Siwowski, T. Lightweight concrete bridge deck slabs reinforced with GFRP composite bars. Roads Bridges 2017, 16, 285–299. [Google Scholar]
- Kim, Y.J. State of the practice of FRP composites in highway bridges. Eng. Struct. 2019, 179, 1–8. [Google Scholar] [CrossRef]
- Cadenazzi, T.; Dotelli, G.; Rossini, M.; Nolan, S.; Nanni, A. Cost and environmental analyses of reinforcement alternatives for a concrete bridge. Struct. Infrastruct. Eng. 2020, 16, 787–802. [Google Scholar]
- Kocaoz, S.; Samaranayake, V.A.; Nanni, A. Tensile characterization of glass FRP bars. Compos. Part B Eng. 2005, 36, 127–134. [Google Scholar] [CrossRef]
- Blaznov, A.N.; Krasnova, A.S.; Krasnov, A.A.; Zhurkovsky, M.E. Geometric and mechanical characterization of ribbed FRP rebars. Polym. Test. 2017, 63, 434–439. [Google Scholar] [CrossRef]
- You, Y.–J.; Kim, J.–H.J.; Park, K.–T.; Seo, D.–W.; Lee, T.–H. Modification of Rule of Mixtures for Tensile Strength Estimation of Circular GFRP Rebars. Polymers 2017, 9, 682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, D.S.; Tabatabai, H.; Nabizadeh, A. Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures. Materials 2018, 11, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajiloo, H.; Green, M.F.; Gales, J. Mechanical properties of GFRP reinforcing bars at high temperatures. Const. Build. Mater. 2018, 162, 142–154. [Google Scholar] [CrossRef]
- D’Antino, T.; Pisani, M.A. Long–term behavior of GFRP reinforcing bars. Compos. Struct. 2019, 227, 111283. [Google Scholar] [CrossRef]
- Arczewska, P.; Polak, M.A.; Penlidis, A. Relation between Tensile Strength and Modulus of Rupture for GFRP Reinforcing Bars. J. Mater. Civ. Eng. 2019, 31, 04018362. [Google Scholar] [CrossRef]
- Jin, Q.; Chen, P.; Gao, Y.; Du, A.; Liu, D.; Sun, L. Tensile Strength and Degradation of GFRP Bars under Combined Effects of Mechanical Load and Alkaline Solution. Materials 2020, 13, 3533. [Google Scholar] [CrossRef]
- ASTM D3916-08(2016). Standard Test Method for Tensile Properties of Pultruded Glass–Fiber–Reinforced Plastic Rod; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM D7205/D7205M-06(2016). Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- CAN/CSA-S806-12. Design and Construction of Building Structures with Fibre–Reinforced Polymers; Canadian Standards Association: Mississauga, ON, Canada, 2004. [Google Scholar]
- CNR–DT 203/2006. Guide for the Design and Construction of Concrete Structures Reinforced with Fiber–Reinforced Polymer Bars; National Research Council, Advisory Committee on Technical Recommendations for Construction: Rome, Italy, 2007. [Google Scholar]
- EN 17129:2018. Continuous-Fibre-Reinforced Plastic Composites-Pultruded Unidirectional Rods-Determination of Tensile Properties in Parallel to the Fibre Direction; CEN–European Committee for Standardization: Brussels, Belgium, 2018. [Google Scholar]
- GOST 31938:2012. Fibre-Reinforced Polymer Bar for Concrete Reinforcement. General Technical Specifications; Interstate Council for Standardization, Metrology and Certification: Moscow, Russia, 2014. [Google Scholar]
- ISO 10406-1:2015. Fibre-Reinforced Polymer (FRP) Reinforcement of Concrete. Test Methods. Part 1: FRP Bars and Grids; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- JSCE-E 531-1995. Test Method for Tensile Properties of Continuous Fiber Reinforcing Materials; Japan Society of Civil Engineers: Tokyo, Japan, 1995. [Google Scholar]
Type | Resin | Fibre Content by Weight [%] | Surface Treatment | Bar Size [mm] | Manufacturer |
---|---|---|---|---|---|
A | epoxy | 77.5 | continuous spiral ribbing | 8, 10, 12 | AlbaKompozit https://www.albakompozit.pl/ |
B | epoxy | 75.0 | continuous spiral ribbing | 5, 6, 8, 11 | ComRebars https://www.comrebars.eu/ |
C | vinyl ester | 83 | sand–coated | 12 | Pultrall (V–Rod) https://www.fiberglassrebar.com/ |
D | vinyl ester | 88 | ribs cut into hardened bars | 12 | Schoeck https://www.schoeck.com/ |
Title | Core Diameter [mm] | Core Area [mm2] | Effective Diameter [mm] | Effective Bar Area [mm2] | Diameter Difference [%] | Area Difference [%] |
---|---|---|---|---|---|---|
A–D8a | 6.41 ± 0.26 | 32.27 | 6.71 ± 0.11 | 35.36 | 4.47 | 8.74 |
A–D8b | 7.20 ± 0.35 | 40.72 | n/a | n/a | n/a | n/a |
A–D10 | 8.24 ± 0.06 | 53.33 | 8.64 ± 0.05 | 58.63 | 4.63 | 9.04 |
A–D12 | 9.88 ± 0.04 | 76.67 | 10.13 ± 0.02 | 80.60 | 2.47 | 4.88 |
B–D5a | 5.06 ± 0.05 | 20.11 | 5.32 ± 0.05 | 22.23 | 4.89 | 9.54 |
B–D5b | 5.01 ± 0.18 | 19.71 | 5.21 ± 0.03 | 21.32 | 3.84 | 7.55 |
B–D5c | 4.94 ± 0.20 | 19.17 | 5.04 ± 0.04 | 19.95 | 1.98 | 3.91 |
B–D6 | 6.05 ± 0.11 | 28.75 | 6.20 ± 0.03 | 30.19 | 2.42 | 4.77 |
B–D8 | 7.80 ± 0.06 | 47.78 | 8.07 ± 0.04 | 51.15 | 3.35 | 6.59 |
B–D11 | 9.81 ± 0.44 | 75.58 | 9.99 ± 0.07 | 78.38 | 1.80 | 3.57 |
C–D12 | 12.20 ± 0.05 | 116.90 | 12.90 ± 0.06 | 130.70 | 5.43 | 10.56 |
D–D12 | 12.14 ± 0.05 | 115.75 | 13.08 ± 0.09 | 134.37 | 7.19 | 13.86 |
Test Standard | Length of Test Section | Gage Length of Extensometer | Test Duration and Speed |
---|---|---|---|
ASTM D7205 [21] | ≥380 mm ≥40ϕ | ≥8ϕ | test time shall be within 1 to 10 min |
CAN/CSA S806 [22] | ≥40ϕ | ≥5ϕ | stress rate: 250 to 500 MPa/min |
CNR–DT 206 [23] | ≥100 mm ≥40ϕ | ≥8ϕ | test time shall be within 1 to 10 min |
EN 17129 [24] | ≥20ϕ | ≥50 mm ≥3ϕ | test time shall be within 1 to 5 min |
GOST 31938 [25] | ≥40ϕ | ≥8ϕ | test time shall be within 3 to 10 min |
ISO 10406–1 [26] | ≥300 mm ≥40ϕ | ≥100 mm ≥8ϕ | strain rate: 0.5% to 1.5% per minute, test time shall not exceed 5 min |
JSCE–E 531 [27] | ≥100 mm ≥40ϕ | ≥8ϕ | stress rate: 100 to 500 MPa/min |
Series | Number of Tests | Tensile Strength | ||||||
---|---|---|---|---|---|---|---|---|
AVG [MPa] | SD [MPa] | CV [%] | ||||||
(a) | (b) | (a)/(b) | (a) | (b) | (a) | (b) | ||
A–D8a | 7 | 1164.04 | 1062.28 | 9.58% | 28.55 | 26.05 | 2.45 | 2.45 |
A–D8b | 5 | 1175.06 | n.a. | n.a. | 11.46 | n.a. | 0.98 | 0.98 |
A–D10 | 5 | 1320.30 | 1200.89 | 9.94% | 50.30 | 45.75 | 3.81 | 3.81 |
A–D12 | 5 | 1243.11 | 1182.51 | 5.12% | 44.93 | 42.74 | 3.61 | 3.61 |
B–D5a | 3 | 1124.44 | 1017.52 | 10.51% | 94.77 | 85.87 | 8.44 | 8.44 |
B–D5b | 3 | 1183.98 | 1094.82 | 8.14% | 11.28 | 10.44 | 0.95 | 0.95 |
B–D5c | 3 | 1031.00 | 990.50 | 4.09% | 29.98 | 28.80 | 2.91 | 2.91 |
B–D6 | 3 | 1193.44 | 1136.07 | 5.05% | 12.31 | 11.64 | 1.02 | 1.02 |
B–D8 | 7 | 1189.58 | 1111.31 | 7.04% | 23.94 | 22.37 | 2.01 | 2.01 |
B–D11 | 3 | 1136.30 | 1095.72 | 3.70% | 60.71 | 58.54 | 5.34 | 5.34 |
C–D12 | 3 | 1415.99 | 1266.49 | 11.80% | 33.13 | 29.63 | 2.34 | 2.34 |
D–D12 | 3 | 1227.41 | 1057.33 | 16.09% | 35.13 | 30.26 | 2.86 | 2.86 |
Standard | Points at the Load–Strain Curve | |
---|---|---|
Start Point | End Point | |
ASTM D7205 [21] | a strain of 0.001 * 25% of ultimate strain | a strain of 0.003 * 50% of ultimate strain |
CAN/CSA S806 [22] | 25% of ultimate load | 50% of ultimate load |
CNR–DT 203 [23] GOST 31938 [24] ISO 10406–1 [25] | 20% of ultimate load | 50% of ultimate load |
EN 17129 [26] | a strain of 0.001 | a strain of 0.005 |
JSCE–E 531 [27] | 20% of ultimate load | 60% of ultimate load |
Series | Statistic | ASTM D7205 [21] | CAN/CSA S806 [22] and | CNR–DT 206 [23] GOST 31938 [25] ISO 10406–1 [26] | EN 17129 [24] | JSCE–E 531 [27] | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
(a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | ||
A–D8a | AVG | 41.16 | 37.56 | 46.39 | 42.32 | 46.52 | 42.45 | 42.57 | 38.85 | 46.17 | 42.13 |
SD | 12.83 | 11.71 | 2.92 | 2.64 | 3.27 | 2.98 | 10.11 | 9.23 | 2.55 | 2.33 | |
CV | 31.17 | 31.17 | 6.30 | 6.24 | 7.02 | 7.02 | 23.76 | 23.75 | 5.51 | 5.52 | |
A–D8b | AVG | 44.88 | n/a | 48.66 | n/a | 49.27 | n/a | 47.74 | n/a | 49.68 | n/a |
SD | 11.18 | n/a | 1.32 | n/a | 1.78 | n/a | 8.12 | n/a | 0.58 | n/a | |
CV | 24.90 | n/a | 2.70 | n/a | 3.62 | n/a | 17.02 | n/a | 1.17 | n/a | |
A–D10 | AVG | 57.45 | 52.26 | 57.01 | 51.85 | 56.85 | 51.71 | 55.96 | 50.9 | 56.58 | 51.46 |
SD | 15.34 | 13.95 | 3.26 | 2.96 | 2.45 | 2.22 | 10.51 | 9.57 | 1.85 | 1.68 | |
CV | 26.71 | 26.70 | 5.71 | 5.71 | 4.30 | 4.30 | 18.79 | 18.80 | 3.27 | 3.27 | |
A–D12 | AVG | 54.7 | 51.84 | 56.11 | 53.37 | 56.69 | 53.93 | 55.98 | 53.25 | 56.76 | 54.00 |
SD | 11.84 | 11.37 | 3.46 | 3.30 | 3.87 | 3.68 | 8.76 | 8.33 | 3.46 | 3.29 | |
CV | 21.64 | 21.93 | 6.17 | 6.18 | 6.82 | 6.83 | 15.65 | 15.65 | 6.10 | 6.09 | |
B–D5a | AVG | 44.25 | 40.03 | 48.94 | 44.28 | 49.15 | 44.46 | 47.38 | 42.85 | 49.04 | 44.37 |
SD | 7.46 | 6.75 | 1.43 | 1.29 | 1.20 | 1.09 | 5.11 | 4.64 | 1.48 | 1.34 | |
CV | 16.86 | 16.86 | 2.92 | 2.92 | 2.45 | 2.45 | 10.79 | 10.83 | 3.01 | 3.02 | |
B–D5b | AVG | 53.51 | 49.48 | 50.62 | 46.8 | 50.37 | 46.58 | 52.41 | 48.47 | 50.12 | 46.34 |
SD | 3.33 | 3.08 | 1.04 | 0.96 | 0.89 | 0.82 | 2.57 | 2.37 | 0.94 | 0.87 | |
CV | 6.22 | 6.22 | 2.05 | 2.06 | 1.76 | 1.76 | 4.90 | 4.90 | 1.87 | 1.88 | |
B–D5c | AVG | 50.81 | 48.81 | 52.35 | 50.3 | 52.19 | 50.14 | 51.44 | 49.42 | 52.4 | 50.34 |
SD | 2.87 | 2.76 | 0.38 | 0.37 | 1.64 | 1.57 | 1.94 | 1.86 | 1.65 | 1.58 | |
CV | 5.66 | 5.65 | 0.73 | 0.73 | 3.14 | 3.13 | 3.77 | 3.77 | 3.15 | 3.15 | |
B–D6 | AVG | 52.07 | 49.58 | 49.87 | 47.48 | 49.88 | 47.49 | 50.82 | 48.39 | 51.11 | 48.67 |
SD | 9.57 | 9.12 | 1.05 | 0.99 | 0.72 | 0.69 | 6.56 | 6.25 | 2.79 | 2.66 | |
CV | 18.39 | 18.39 | 2.10 | 2.09 | 1.44 | 1.45 | 12.91 | 12.91 | 5.47 | 5.47 | |
B–D8 | AVG | 51.12 | 49.09 | 52.7 | 49.24 | 52.97 | 49.49 | 53.59 | 50.06 | 52.83 | 49.36 |
SD | 6.22 | 4.41 | 0.68 | 0.64 | 0.83 | 0.77 | 3.04 | 2.84 | 0.69 | 0.65 | |
CV | 12.18 | 8.98 | 1.30 | 1.29 | 1.56 | 1.56 | 5.67 | 5.67 | 1.31 | 1.32 | |
B–D11 | AVG | 56.01 | 54.01 | 51.79 | 49.94 | 52.40 | 50.53 | 55.58 | 53.61 | 52.91 | 51.02 |
SD | 2.27 | 2.20 | 1.10 | 1.06 | 0.94 | 0.90 | 1.66 | 1.61 | 1.89 | 1.82 | |
CV | 4.06 | 4.06 | 2.13 | 2.12 | 1.79 | 1.78 | 2.99 | 3.00 | 3.57 | 3.57 | |
C–D12 | AVG | 68.02 | 60.84 | 65.04 | 58.18 | 65.57 | 58.65 | 67.82 | 59.76 | 65.18 | 58.30 |
SD | 5.28 | 4.72 | 1.89 | 1.69 | 0.95 | 0.84 | 2.95 | 4.01 | 0.95 | 0.85 | |
CV | 7.76 | 7.76 | 2.90 | 2.91 | 1.44 | 1.44 | 4.35 | 6.71 | 1.46 | 1.47 | |
D–D12 | AVG | 62.41 | 53.76 | 56.76 | 48.89 | 57.52 | 49.55 | 63.39 | 54.60 | 57.53 | 49.56 |
SD | 2.83 | 2.43 | 1.37 | 1.18 | 1.66 | 1.43 | 1.50 | 1.30 | 1.12 | 0.97 | |
CV | 4.53 | 4.52 | 2.41 | 2.40 | 2.89 | 2.89 | 2.37 | 2.37 | 1.95 | 1.95 |
Series | Number of Tests | Ultimate Strain | MI/MII | |||||
---|---|---|---|---|---|---|---|---|
Method I | Method II | |||||||
AVG [%] | SD [%] | CV [%] | AVG [%] | SD [%] | CV [%] | ΔAVG [%] | ||
A–D8a | 7 | 2.46 | 0.41 | 16.54 | 2.52 | 0.16 | 6.41 | –2.38 |
A–D8b | 5 | 2.37 | 0.20 | 8.31 | 2.42 | 0.06 | 2.37 | –2.07 |
A–D10 | 5 | 2.32 | 0.21 | 9.16 | 2.32 | 0.14 | 6.32 | 0.00 |
A–D12 | 5 | 2.28 | 0.15 | 6.68 | 2.22 | 0.09 | 3.89 | 2.70 |
B–D5a | 3 | 2.37 | 0.21 | 8.67 | 2.30 | 0.14 | 6.02 | 3.04 |
B–D5b | 3 | 2.38 | 0.07 | 2.94 | 2.34 | 0.07 | 3.02 | 1.71 |
B–D5c | 3 | 2.03 | 0.06 | 3.17 | 1.97 | 0.07 | 3.64 | 3.05 |
B–D6 | 3 | 2.32 * | 0.17 * | 7.31 | 2.39 | 0.07 | 2.97 | –2.93 |
B–D8 | 7 | 2.30 | 0.07 | 3.11 | 2.26 | 0.05 | 2.24 | 1.77 |
B–D11 | 3 | 2.14 | 0.07 | 3.06 | 2.19 | 0.09 | 3.97 | –2.28 |
C–D12 | 3 | 2.23 | 0.02 | 0.93 | 2.18 | 0.03 | 1.50 | 2.29 |
D–D12 | 3 | 2.06 | 0.02 | 0.84 | 2.16 | 0.11 | 4.98 | –4.63 |
Type (Series) | Tensile Strength [MPa] | Modulus of Elasticity [GPa] | Ultimate Strain [%] | ||||||
---|---|---|---|---|---|---|---|---|---|
AVG | SD | CV | AVG | SD | CV | AVG | SD | CV | |
A (A–D12) | 1243.11 | 44.93 | 3.61 | 56.69 | 3.86 | 6.83 | 2.20 | 0.10 | 4.44 |
B (B–D11) | 1136.30 | 60.71 | 5.34 | 52.40 | 0.94 | 1.79 | 2.17 | 0.09 | 4.04 |
C (C–D12) | 1415.99 | 33.13 | 2.34 | 65.57 | 0.95 | 1.44 | 2.16 | 0.03 | 1.52 |
D (D–D12) | 1227.41 | 35.13 | 2.86 | 57.52 | 1.66 | 2.89 | 2.14 | 0.11 | 5.30 |
Factor | Series | Tensile Strength [MPa] | Modulus of Elasticity [GPa] | Ultimate Strain [%] | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AVG | SD | CV | AVG | SD | CV | AVG | SD | CV | ||
Homogeneity of batch | A–D8a | 1164.04 | 28.55 | 2.45 | 46.39 | 2.92 | 6.30 | 2.52 | 0.16 | 6.41 |
A–D8b | 1175.06 | 11.46 | 0.98 | 48.66 | 1.32 | 2.70 | 2.42 | 0.06 | 2.37 | |
Resin modification | B–D5a | 1124.44 | 85.87 | 8.44 | 48.94 | 1.43 | 2.92 | 2.30 | 0.14 | 6.02 |
B–D5b | 1183.98 | 11.28 | 0.95 | 50.62 | 1.04 | 2.05 | 2.34 | 0.07 | 3.02 | |
B–D5c | 1031.00 | 29.98 | 2.91 | 52.35 | 0.38 | 0.73 | 1.97 | 0.07 | 3.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiater, A.; Siwowski, T. Comparison of Tensile Properties of Glass Fibre Reinforced Polymer Rebars by Testing According to Various Standards. Materials 2020, 13, 4110. https://doi.org/10.3390/ma13184110
Wiater A, Siwowski T. Comparison of Tensile Properties of Glass Fibre Reinforced Polymer Rebars by Testing According to Various Standards. Materials. 2020; 13(18):4110. https://doi.org/10.3390/ma13184110
Chicago/Turabian StyleWiater, Agnieszka, and Tomasz Siwowski. 2020. "Comparison of Tensile Properties of Glass Fibre Reinforced Polymer Rebars by Testing According to Various Standards" Materials 13, no. 18: 4110. https://doi.org/10.3390/ma13184110
APA StyleWiater, A., & Siwowski, T. (2020). Comparison of Tensile Properties of Glass Fibre Reinforced Polymer Rebars by Testing According to Various Standards. Materials, 13(18), 4110. https://doi.org/10.3390/ma13184110