Tuning the Optical Band Gap of Semiconductor Nanocomposites—A Case Study with ZnS/Carbon
Abstract
:1. Introduction
1.1. Band Positions and Electrical Fields
1.2. Semiconductor Composites
2. Results and Discussion
2.1. Pure ZnS and CNTs
2.2. Fields and Defects
2.3. Composites and Ligands
2.4. Comparison with Experimental Results
3. Materials and Methods
3.1. Synthesis and Characterization
3.2. Computational Details
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bredol, M.; Matras, K.; Szatkowski, A.; Sanetra, J.; Prodi-Schwab, A. P3HT/ZnS: A new hybrid bulk heterojunction photovoltaic system with very high open circuit voltage. Sol. Energy Mater. Sol. Cells 2009, 93, 662–666. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef]
- Wöhrle, D.; Tausch, M.W.; Stohrer, W.D. Photochemie; Wiley-VCH: Weinheim, Germany, 1998. [Google Scholar]
- Van de Walle, C.G.; Neugebauer, J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 2003, 423, 626–628. [Google Scholar] [CrossRef]
- Luo, J.; Tilley, S.D.; Steier, L.; Schreier, M.; Mayer, M.T.; Fan, H.J.; Grätzel, M. Solution Transformation of Cu2O into CuInS2 for Solar Water Splitting. Nano Lett. 2015, 15, 1395–1402. [Google Scholar] [CrossRef]
- Kang, S.; Kim, Y.; Jang, E.; Kang, Y.; Han, S. Fundamental Limit of the Emission Linewidths of Quantum Dots: An Ab Initio Study of CdSe Nanocrystals. ACS Appl. Mater. Interfaces 2020, 12, 22012–22018. [Google Scholar] [CrossRef]
- Zheng, L.; Migliore, A.; Beratan, D.N. Electrostatic Field-Induced Oscillator Strength Focusing in Molecules. J. Phys. Chem. B 2020, 124, 6376–6388. [Google Scholar] [CrossRef] [PubMed]
- Hiemenz, P.C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry, 3rd ed.; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Wang, W.; Liu, G.; Cho, H.; Guo, Y.; Shi, D.; Lian, J.; Ewing, R. Surface charge induced Stark effect on luminescence of quantum dots conjugated on functionalized carbon nanotubes. Chem. Phys. Lett. 2009, 469, 149–152. [Google Scholar] [CrossRef]
- Sarpong, L.K.; Bredol, M.; Schönhoff, M.; Wegrzynowicz, A.; Jenewein, K.; Uphoff, H. One-pot synthesis of carbon nanotube/zinc sulfide heterostructures: Characterization and effect of electrostatic interaction on the optical properties. Opt. Mater. 2018, 86, 398–407. [Google Scholar] [CrossRef]
- Sarpong, L.K.; Bredol, M.; Schönhoff, M. Heteroaggregation of multiwalled carbon nanotubes and ZnS nanoparticles. Carbon 2017, 125, 480–491. [Google Scholar] [CrossRef]
- Hankin, A.; Bedoya-Lora, F.E.; Alexander, J.C.; Regoutz, A.; Kelsall, G.H. Flat band potential determination: Avoiding the pitfalls. J. Mater. Chem.A 2019, 7, 26162–26176. [Google Scholar] [CrossRef] [Green Version]
- Woods-Robinson, R.; Han, Y.; Zhang, H.; Ablekim, T.; Khan, I.; Persson, K.A.; Zakutayev, A. Wide Band Gap Chalcogenide Semiconductors. Chem. Rev. 2020, 120, 4007–4055. [Google Scholar] [CrossRef] [PubMed]
- Gerosa, M.; Gygi, F.; Govoni, M.; Galli, G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater. 2018, 17, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Houtepen, A.J.; Hens, Z.; Owen, J.S.; Infante, I. On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals. Chem. Mater. 2017, 29, 752–761. [Google Scholar] [CrossRef]
- ten Brinck, S.; Zaccaria, F.; Infante, I. Defects in Lead Halide Perovskite Nanocrystals: Analogies and (Many) Differences with the Bulk. ACS Energy Lett. 2019, 4, 2739–2747. [Google Scholar] [CrossRef]
- Guguła, K.; Entrup, M.; Stegemann, L.; Seidel, S.; Pöttgen, R.; Strassert, C.A.; Bredol, M. Solid solution quantum dots with tunable dual- or ultra-broadband emission for LEDs. ACS Appl. Mater. Interfaces 2017, 9, 521–528. [Google Scholar] [CrossRef]
- Lim, J.; Park, Y.S.; Klimov, V.I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 2017, 17, 42–49. [Google Scholar] [CrossRef]
- Jang, E.; Kim, Y.; Won, Y.H.; Jang, H.; Choi, S.M. Environmentally Friendly InP-Based Quantum Dots for Efficient Wide Color Gamut Displays. ACS Energy Lett. 2020, 5, 1316–1327. [Google Scholar] [CrossRef] [Green Version]
- Hughes, K.E.; Stein, J.L.; Friedfeld, M.R.; Cossairt, B.M.; Gamelin, D.R. Effects of Surface Chemistry on the Photophysics of Colloidal InP Nanocrystals. ACS Nano 2019, 13, 14198–14207. [Google Scholar] [CrossRef]
- Frick, J.J.; Cava, R.J.; Bocarsly, A.B. Chalcopyrite CuIn(S1–xSex)2 for Photoelectrocatalytic H2 Evolution: Unraveling the Energetics and Complex Kinetics of Photogenerated Charge Transfer in the Semiconductor Bulk. Chem. Mater. 2018, 30, 4422–4431. [Google Scholar] [CrossRef]
- Xu, S.; Carter, E.A. Oxidation State of GaP Photoelectrode Surfaces under Electrochemical Conditions for Photocatalytic CO2 Reduction. J. Phys. Chem. B 2020, 124, 2255–2261. [Google Scholar] [CrossRef]
- Pham, T.A.; Ping, Y.; Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 2017, 16, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Gerischer, H.; Ekardt, W. Fermi levels in electrolytes and the absolute scale of redox potentials. Appl. Phys. Lett. 1983, 43, 393–395. [Google Scholar] [CrossRef]
- Cahen, D.; Kahn, A. Electron Energetics at Surfaces and Interfaces: Concepts and Experiments. Adv. Mater. 2003, 15, 271–277. [Google Scholar] [CrossRef]
- Ley, L.; Pollak, R.A.; McFeely, F.R.; Kowalczyk, S.P.; Shirley, D.A. Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy. Phys. Rev. B 1974, 9, 600–621. [Google Scholar] [CrossRef]
- Chiang, T.C.; Himpsel, F.J. 2.1.22 ZnS. In Subvolume A; Springer: Berlin/Heidelberg, Germany, 2005; pp. 77–80. [Google Scholar] [CrossRef]
- McCloy, J.; Tustison, R. Physics and Chemistry of ZnS. In Chemical Vapor Deposited Zinc Sulfide; Society of Photo-Optical Instrumentation Engineers: Bellingham, WA, USA, 2013; pp. 1–30. [Google Scholar] [CrossRef]
- Swank, R.K. Surface properties of II-VI compounds. Phys. Rev. 1967, 153, 844–849. [Google Scholar] [CrossRef]
- Huang, X.; Jones, T.; Fan, H.; Willinger, M.G. Real-time atomic scale observation of void formation and anisotropic growth in II-VI semiconducting ribbons. Nanoscale 2017, 9, 12479–12485. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Shen, Y.C. Ionization potentials of semiconductors from first-principles. J. Chem. Phys. 2013, 139. [Google Scholar] [CrossRef]
- Sun, J.P.; Zhang, Z.X.; Hou, S.M.; Zhang, G.M.; Gu, Z.N.; Zhao, X.Y.; Liu, W.M.; Xue, Z.Q. Work function of single-walled carbon nanotubes determined by field emission microscopy. Appl. Phys. A Mater. Sci. Process. 2002, 75, 479–483. [Google Scholar] [CrossRef]
- Liu, P.; Sun, Q.; Zhu, F.; Liu, K.; Jiang, K.; Liu, L.; Li, Q.; Fan, S. Measuring the work function of carbon nanotubes with thermionic method. Nano Lett. 2008, 8, 647–651. [Google Scholar] [CrossRef]
- Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560. [Google Scholar] [CrossRef]
- Yoffe, A.D. Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 1993, 42, 173–262. [Google Scholar] [CrossRef]
- Kayanuma, Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 1988, 38, 9797–9805. [Google Scholar] [CrossRef]
- Madelung, O. Semiconductors: Other than Group IV Elements and III-V Compounds, Data in Science and Technology; Data in Science and Technology; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Takagahara, T.; Takeda, K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 1992, 46, 15578–15581. [Google Scholar] [CrossRef] [PubMed]
- Sahai, S.; Husain, M.; Shanker, V.; Singh, N.; Haranath, D. Facile synthesis and step by step enhancement of blue photoluminescence from Ag-doped ZnS quantum dots. J. Colloid Interface Sci. 2011, 357, 379–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltani, N.; Saion, E.; Erfani, M.; Rezaee, K.; Bahmanrokh, G.; Drummen, G.P.; Bahrami, A.; Hussein, M.Z. Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles synthesized by microwave irradiation. Int. J. Mol. Sci. 2012, 13, 12412–12427. [Google Scholar] [CrossRef] [PubMed]
- Nanda, J.; Sapra, S.; Sarma, D.D.; Chandrasekharan, N.; Hodes, G. Size-selected zinc sulfide nanocrystallites: Synthesis, structure, and optical studies. Chem. Mater. 2000, 12, 1018–1024. [Google Scholar] [CrossRef]
- Andreussi, O.; Dabo, I.; Marzari, N. Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 2012, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciejewska, B.M.; Jasiurkowska-Delaporte, M.; Vasylenko, A.I.; Kozioł, K.K.; Jurga, S. Experimental and theoretical studies on the mechanism for chemical oxidation of multiwalled carbon nanotubes. RSC Adv. 2014, 4, 28826–28831. [Google Scholar] [CrossRef]
- Kim, K.S.; Park, K.A.; Kim, H.J.; Bae, D.J.; Lim, S.C.; Lee, Y.H.; Kim, J.R.; Kim, J.J.; Choi, W.B. Band gap modulation of a carbon nanotube by hydrogen functionalization. J. Korean Phys. Soc. 2003, 42, 137–142. [Google Scholar]
- Miao, Y. Detection of glucose with room-temperature phosphorescent quantum dots without conjugation. Sens. Bio-Sens. Res. 2015, 5, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Guguła, K.; Bredol, M. Transparent CuInS2/PMMA Nanocomposites Luminescent in the Visible and NIR Region. Z. Naturforsch. B Chem. Sci. 2014, 69b, 217–223. [Google Scholar] [CrossRef]
- Guguła, K.; Stegemann, L.; Cywiński, P.; Strassert, C.; Bredol, M. Facile surface engineering of CuInS2/ZnS quantum dots for LED down-converters. RSC Adv. 2016, 6, 10086–10093. [Google Scholar] [CrossRef]
- Tamang, S.; Beaune, G.; Poillot, C.; De Waard, M.; Texier-Nogues, I.; Reiss, P. Compact and highly stable quantum dots through optimized aqueous phase transfer. Colloid. Quantum Dots/Nanocrystals Biomed. Appl. VI 2011, 7909, 79091B. [Google Scholar] [CrossRef] [Green Version]
- Knowles, K.E.; Frederick, M.T.; Tice, D.B.; Morris-Cohen, A.J.; Weiss, E.A. Colloidal quantum dots: Think outside the (particle-in-a-)box. J. Phys. Chem. Lett. 2012, 3, 18–26. [Google Scholar] [CrossRef]
- Kroupa, D.M.; Vörös, M.; Brawand, N.P.; McNichols, B.W.; Miller, E.M.; Gu, J.; Nozik, A.J.; Sellinger, A.; Galli, G.; Beard, M.C. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gabka, G.; Bujak, P.; Gryszel, M.; Kotwica, K.; Pron, A. Anchor Groups Effect on Spectroscopic and Electrochemical Properties of Quaternary Nanocrystals Cu-In-Zn-S Capped with Arylamine Derivatives. J. Phys. Chem. C 2015, 119, 9656–9664. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cococcioni, M.; De Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B-Condens. Matter Mater. Phys. 2005, 71. [Google Scholar] [CrossRef] [Green Version]
- Tolba, S.A.; Gameel, K.M.; Ali, B.A.; Almossalami, H.A.; Allam, N.K. The DFT+U: Approaches, Accuracy, and Applications. In Density Functional Calculations; Yang, G., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 1. [Google Scholar] [CrossRef] [Green Version]
- Timrov, I.; Marzari, N.; Cococcioni, M. Hubbard parameters from density-functional perturbation theory. Phys. Rev. B 2018, 98, 085127. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Carter, E.A. Communication: Comparing ab initio methods of obtaining effective U parameters for closed-shell materials. J. Chem. Phys. 2014, 140, 121105. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, G.; Dkhil, S.B.; Saba, M.I.; Malloci, G.; Melis, C.; Alippi, P.; Filippone, F.; Giannozzi, P.; Thakur, A.K.; Gaceur, M.; et al. Interfacial Engineering of P3HT/ZnO Hybrid Solar Cells Using Phthalocyanines: A Joint Theoretical and Experimental Investigation. Adv. Energy Mater. 2014, 4, 1301694. [Google Scholar] [CrossRef]
- Khan, M.S.; Shi, L.; Zou, B. Impact of vacancy defects on optoelectronic and magnetic properties of Mn-doped ZnSe. Comput. Mater. Sci. 2020, 174, 109493. [Google Scholar] [CrossRef]
- Huang, X.; Lindgren, E.; Chelikowsky, J.R. Surface passivation method for semiconductor nanostructures. Phys. Rev. B-Condens. Matter Mater. Phys. 2005, 71. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voigt, D.; Sarpong, L.; Bredol, M. Tuning the Optical Band Gap of Semiconductor Nanocomposites—A Case Study with ZnS/Carbon. Materials 2020, 13, 4162. https://doi.org/10.3390/ma13184162
Voigt D, Sarpong L, Bredol M. Tuning the Optical Band Gap of Semiconductor Nanocomposites—A Case Study with ZnS/Carbon. Materials. 2020; 13(18):4162. https://doi.org/10.3390/ma13184162
Chicago/Turabian StyleVoigt, Dominik, Larry Sarpong, and Michael Bredol. 2020. "Tuning the Optical Band Gap of Semiconductor Nanocomposites—A Case Study with ZnS/Carbon" Materials 13, no. 18: 4162. https://doi.org/10.3390/ma13184162
APA StyleVoigt, D., Sarpong, L., & Bredol, M. (2020). Tuning the Optical Band Gap of Semiconductor Nanocomposites—A Case Study with ZnS/Carbon. Materials, 13(18), 4162. https://doi.org/10.3390/ma13184162