Synthesis and Characterization of Cu2FeSnS4–Cu2MnSnS4 Solid Solution Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Microspheres
2.3. Characterization of Microspheres
3. Results and Discussion
3.1. Optimization of the EG:H2O Ratio
3.2. Optimization of Time of Synthesis
3.3. Synthesis of Cu2(Mn1−xFex)SnS4 Solid Solution Series
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, H.C.; Dai, P.C.; Feng, Z.Y.; Fan, W.L.; Zhan, J.H. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J. Mater. Chem. 2012, 22, 7502–7506. [Google Scholar] [CrossRef]
- Hsu, W.; Sutter-Fella, C.M.; Hettick, M.; Cheng, L.T.; Chan, S.W.; Chen, Y.F.; Zeng, Y.P.; Zheng, M.; Wang, H.P.; Chiang, C.C.; et al. Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells. Sci. Rep. 2015, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Ford, G.M.; Yang, W.C.; Walker, B.C.; Stach, E.A.; Hillhouse, H.W.; Agrawal, R. Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals. J. Am. Chem. Soc. 2010, 132, 17384–17386. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Yamaguchi, K.; Kimoto, Y.; Yasaki, Y.; Kato, T.; Sugimoto, H. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell with Record Efficiency of 23.35%. IEEE J. Photovolt. 2019, 9, 1863–1867. [Google Scholar] [CrossRef]
- Katagiri, H.; Jimbo, K.; Maw, W.S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A. Development of CZTS-based thin film solar cells. Thin Solid Films 2009, 517, 2455–2460. [Google Scholar] [CrossRef]
- Tanaka, K.; Oonuki, M.; Moritake, N.; Uchiki, H. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol. Energy Mater. Sol.Cells 2009, 93, 583–587. [Google Scholar] [CrossRef]
- Weber, A.; Schmidt, S.; Abou-Ras, D.; Schubert-Bischoff, P.; Denks, I.; Mainz, R.; Schock, H.W. Texture inheritance in thin-film growth of Cu2ZnSnS4. Appl. Phys. Lett. 2009, 95, 3. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.J.; Hillhouse, H.W.; Agrawal, R. Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. J. Am. Chem. Soc. 2009, 131, 11672. [Google Scholar] [CrossRef]
- Steinhagen, C.; Panthani, M.G.; Akhavan, V.; Goodfellow, B.; Koo, B.; Korgel, B.A. Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics. J. Am. Chem. Soc. 2009, 131, 12554. [Google Scholar] [CrossRef]
- Shavel, A.; Arbiol, J.; Cabot, A. Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+x+2y. J. Am. Chem. Soc. 2010, 132, 4514. [Google Scholar] [CrossRef]
- Ahn, S.; Jung, S.; Gwak, J.; Cho, A.; Shin, K.; Yoon, K.; Park, D.; Cheong, H.; Yun, J.H. Determination of band gap energy (E-g) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values. Appl. Phys. Lett. 2010, 97, 3. [Google Scholar] [CrossRef]
- Todorov, T.K.; Reuter, K.B.; Mitzi, D.B. High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber. Adv. Mater. 2010, 22, E156. [Google Scholar] [CrossRef] [PubMed]
- Balaz, P.; Balaz, M.; Zorkovska, A.; Skorvanek, I.; Bujnakova, Z.; Trajic, J. Kinetics of Solid-State Synthesis of Quaternary Cu2FeSnS4 (Stannite) Nanocrystals for Solar Energy Applications. Acta Phys. Pol. A 2017, 131, 1153–1155. [Google Scholar] [CrossRef]
- Oueslati, H.; Ben Rabeh, M.; Kanzari, M. Growth and Characterization of the Evaporated Quaternary Absorber Cu2FeSnS4 for Solar Cell Applications. J. Electron. Mater. 2018, 47, 3577–3584. [Google Scholar] [CrossRef]
- Siebentritt, S. Why are kesterite solar cells not 20% efficient? Thin Solid Films 2013, 535, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gu, X.; Guan, H.; Yu, F. Flower-like Cu2MnSnS4 particles synthesized via microwave irradiation method. Chalcogenide Lett. 2015, 12, 99–103. [Google Scholar]
- Nie, L.Y.; Yang, J.D.; Yang, D.D.; Liu, S. Effect of substrate temperature on growth and properties of Cu2MnSnS4 thin films prepared by chemical spray pyrolysis. J. Mater. Sci.-Mater. Electron. 2019, 30, 3760–3766. [Google Scholar] [CrossRef]
- Ai, L.H.; Jiang, J. Hierarchical porous quaternary Cu-Fe-Sn-S hollow chain microspheres: Rapid microwave nonaqueous synthesis, growth mechanism, and their efficient removal of organic dye pollutant in water. J. Mater. Chem. 2012, 22, 20586–20592. [Google Scholar] [CrossRef]
- Ai, L.H.; Jiang, J. Self-sacrificial templating synthesis of porous quaternary Cu-Fe-Sn-S semiconductor nanotubes via microwave irradiation. Nanotechnology 2012, 23, 9. [Google Scholar] [CrossRef]
- An, C.H.; Tang, K.B.; Shen, G.Z.; Wang, C.R.; Huang, L.Y.; Qian, Y.T. The synthesis and characterization of nanocrystalline Cu- and Ag-based multinary sulfide semiconductors. Mater. Res. Bull. 2003, 38, 823–830. [Google Scholar] [CrossRef]
- Yan, C.; Huang, C.; Yang, J.; Liu, F.Y.; Liu, J.; Lai, Y.Q.; Li, J.; Liu, Y.X. Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals. Chem. Commun. 2012, 48, 2603–2605. [Google Scholar] [CrossRef] [PubMed]
- Fontane, X.; Izquierdo-Roca, V.; Saucedo, E.; Schorr, S.; Yukhymchuk, V.O.; Valakh, M.Y.; Perez-Rodriguez, A.; Morante, J.R. Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4. J. Alloys Compd. 2012, 539, 190–194. [Google Scholar] [CrossRef]
- Gui, Z.; Fan, R.; Chen, X.H.; Hu, Y.; Wang, Z.Z. A new colloidal precursor cooperative conversion route to nanocrystalline quaternary copper sulfide. Mater. Res. Bull. 2004, 39, 237–241. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, W.; Tan, R.; Song, W.; Chen, J. Solvothermal synthesis of highly crystallized quaternary chalcogenide Cu2FeSnS4 particles. Mater. Lett. 2013, 102, 39–42. [Google Scholar] [CrossRef]
- Khadka, D.B.; Kim, J. Structural, optical and electrical properties of Cu2FeSnX4 (X = S, Se) thin films prepared by chemical spray pyrolysis. J. Alloys Compd. 2015, 638, 103–108. [Google Scholar] [CrossRef]
- Meng, X.; Deng, H.; He, J.; Zhu, L.; Sun, L.; Yang, P.; Chu, J. Synthesis of Cu2FeSnSe4 thin film by selenization of RF magnetron sputtered precursor. Mater. Lett. 2014, 117, 1–3. [Google Scholar] [CrossRef]
- Meng, X.; Deng, H.; He, J.; Sun, L.; Yang, P.; Chu, J. Synthesis, structure, optics and electrical properties of Cu2FeSnS4 thin film by sputtering metallic precursor combined with rapid thermal annealing sulfurization process. Mater. Lett. 2015, 151, 61–63. [Google Scholar] [CrossRef]
- Prabhakar, R.R.; Nguyen Huu, L.; Kumar, M.H.; Boix, P.P.; Juan, S.; John, R.A.; Batabyal, S.K.; Wong, L.H. Facile Water-based Spray Pyrolysis of Earth-Abundant Cu2FeSnS4 Thin Films as an Efficient Counter Electrode in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 17661–17667. [Google Scholar] [CrossRef]
- Wang, W.; Shen, H.L.; Yao, H.Y.; Li, J.Z. Preparation and properties of Cu2FeSnS4 nanocrystals by ultrasound-assisted microwave irradiation. Mater. Lett. 2014, 125, 183–186. [Google Scholar] [CrossRef]
- Zhang, B.; Cao, M.; Li, L.; Sun, Y.; Shen, Y.; Wang, L. Facile synthesis of Cu2FeSnSe4 sheets with a simple solvothermal method. Mater. Lett. 2013, 93, 111–114. [Google Scholar] [CrossRef]
- Zhou, J.; Ye, Z.; Wang, Y.; Yi, Q.; Wen, J. Solar cell material Cu2FeSnS4 nanoparticles synthesized via a facile liquid reflux method. Mater. Lett. 2015, 140, 119–122. [Google Scholar] [CrossRef]
- Chen, L.L.; Deng, H.M.; Tao, J.H.; Zhou, W.L.; Sun, L.; Yue, F.Y.; Yang, P.X.; Chu, J.H. Influence of annealing temperature on structural and optical properties of Cu2MnSnS4 thin films fabricated by sol-gel. J. Alloys Compd. 2015, 640, 23–28. [Google Scholar] [CrossRef]
- Chen, L.L.; Deng, H.M.; Tao, J.H.; Cao, H.Y.; Sun, L.; Yang, P.X.; Chu, J.H. Strategic improvement of Cu2MnSnS4 films by two distinct post annealing processes for constructing thin film solar cells. Acta Mater. 2016, 109, 1–7. [Google Scholar] [CrossRef]
- Le Donne, A.; Marchionna, S.; Acciarri, M.; Cernuschi, F.; Binetti, S. Relevant efficiency enhancement of emerging Cu2MnSnS4 thin film solar cells by low temperature annealinge. Sol. Energy 2017, 149, 125–131. [Google Scholar] [CrossRef]
- Marchionna, S.; Le Donne, A.; Merlini, M.; Binetti, S.; Acciarri, M.; Cernuschi, F. Growth of Cu2MnSnS4 PV absorbers by sulfurization of evaporated precursors. J. Alloys Compd. 2017, 693, 95–102. [Google Scholar] [CrossRef]
- Prabhakar, R.R.; Su, Z.H.; Xin, Z.; Baikie, T.; Woei, L.S.; Shukla, S.; Batabyal, S.K.; Gunawan, O.; Wong, L.H. Photovoltaic effect in earth abundant solution processed Cu2MnSnS4 and Cu2MnSn(S,Se)4 thin films. Sol. Energy Mater. Sol. Cells 2016, 157, 867–873. [Google Scholar] [CrossRef]
- Yan, X.; Michael, E.; Komarneni, S.; Brownson, J.R.; Yan, Z.F. Microwave-hydrothermal/solvothermal synthesis of kesterite, an emerging photovoltaic material. Ceram. Int. 2014, 40, 1985–1992. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Ni, Z.; Fang, G.; Tao, W. One-step sonochemical synthesis route towards kesterite Cu2ZnSnS4 nanoparticles. J. Alloys Compd. 2015, 630, 23–28. [Google Scholar] [CrossRef]
- Tiong, V.T.; Zhang, Y.; Bell, J.; Wang, H.X. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: The effect of the sulphur precursor. Crystengcomm 2014, 16, 4306–4313. [Google Scholar] [CrossRef]
- Lopez-Vergara, F.; Galdamez, A.; Manriquez, V.; Barahona, P.; Pena, O. Magnetic properties and crystal structure of solid-solution Cu2MnxFe1−xSnS4 chalcogenides with stannite-type structure. Phys. Status Solidi B-Basic Solid State Phys. 2014, 251, 958–964. [Google Scholar] [CrossRef]
- Marciniak, H.; Diduszko, R.; Kozak, M. XRAYAN - Program do rentgenowskiej analizyfazowej (in Polish); KOMA: Warszawa, Poland, 2006. [Google Scholar]
- Liang, X.L.; Guo, P.; Wang, G.; Deng, R.P.; Pan, D.C.; Wei, X.H. Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zincblende and wurtzite structure. RSC Adv. 2012, 2, 5044–5046. [Google Scholar] [CrossRef]
- Li, Z.G.; Lui, A.L.K.; Lam, K.H.; Xi, L.F.; Lam, Y.M. Phase-Selective Synthesis of Cu2ZnSnS4 Nanocrystals using Different Sulfur Precursors. Inorg. Chem. 2014, 53, 10874–10880. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Su, X.; Jiang, J. Phase-Controlled Synthesis of Cu2ZnSnS4 Nanocrystals: The Role of Reactivity between Zn and S. J. Am. Chem. Soc. 2013, 135, 18377–18384. [Google Scholar] [CrossRef] [PubMed]
- Whiffen, R.M.K.; Jovanovic, D.J.; Antic, Z.; Bartova, B.; Milivojevic, D.; Dramicanin, M.D.; Brik, M.G. Structural, optical and crystal field analyses of undoped and Mn2+-doped ZnS nanoparticles synthesized via reverse micelle route. J. Lumin. 2014, 146, 133–140. [Google Scholar] [CrossRef]
- Patel, M.; Mukhopadhyay, I.; Ray, A. Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition. J. Phys. D-Appl. Phys. 2012, 45, 10. [Google Scholar] [CrossRef]
- Neto, N.F.A.; Oliveira, Y.G.; Bomio, M.R.D.; Motta, F.V. Synthesis and Characterization of Co2+ and Mn2+ Codoped ZnO Nanoparticles Obtained by the Sonochemical Method: Photocatalytic and Antimicrobial Properties. J. Electron. Mater. 2019, 48, 5900–5905. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Le, A.D.; Vu, T.B.; Lam, Q.V. Investigations on photoluminescence enhancement of poly(vinyl alcohol) encapsulated Mn-doped ZnS quantum dots. J. Lumin. 2017, 192, 166–172. [Google Scholar] [CrossRef]
- Rawat, K.; Shishodia, P.K. Structural and optical properties of sol gel derived Cu2ZnSnS4 nanoparticles. Adv. Powder Technol. 2017, 28, 611–617. [Google Scholar] [CrossRef]
- Chirita, P.; Descostes, M.; Schlegel, M.L. Oxidation of FeS by oxygen-bearing acidic solutions. J. Colloid Interface Sci. 2008, 321, 84–95. [Google Scholar] [CrossRef]
- Digraskar, R.V.; Sapner, V.S.; Narwade, S.S.; Mali, S.M.; Ghule, A.V.; Sathe, B.R. Enhanced electrocatalytic hydrogen generation from water via cobalt-doped Cu2ZnSnS4 nanoparticles. RSC Adv. 2018, 8, 20341–20346. [Google Scholar] [CrossRef] [Green Version]
- Zaberca, O.; Oftinger, F.; Chane-Ching, J.Y.; Datas, L.; Lafond, A.; Puech, P.; Balocchi, A.; Lagarde, D.; Marie, X. Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers. Nanotechnology 2012, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, P.; Song, X.F.; Gao, L. Sol-gel nanocasting synthesis of kesterite Cu2ZnSnS4 nanorods. RSC Adv. 2015, 5, 1220–1226. [Google Scholar] [CrossRef]
- Gurel, T.; Sevik, C.; Cagin, T. Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures. Phys. Rev. B 2011, 84, 7. [Google Scholar] [CrossRef]
- Trajic, J.; Romcevic, M.; Petrovic, M.; Gilic, M.; Balaz, P.; Zorkovska, A.; Romcevic, N. Optical properties of the mechanochemically synthesized Cu2FeSnS4 (stannite) nanocrystals: Raman study. Opt. Mater. 2018, 75, 314–318. [Google Scholar] [CrossRef]
- Lopez-Vergara, F.; Galdamez, A.; Manriquez, V.; Gonzales, G. Crystal structure and Raman scattering characterization of Cu2Fe1−xCoxSnS4 chalcogenide compounds. Solid State Sci. 2015, 49, 54–60. [Google Scholar] [CrossRef]
- Havryliuk, Y.; Valakh, M.Y.; Dzhagan, V.; Greshchuk, O.; Yukhymchuk, V.; Raevskaya, A.; Stroyuk, O.; Selyshchev, O.; Gaponik, N.; Zahn, D.R.T. Raman characterization of Cu2ZnSnS4 nanocrystals: Phonon confinement effect and formation of CuxS phases. RSC Adv. 2018, 8, 30736–30746. [Google Scholar] [CrossRef] [Green Version]
Cu | Mn | Fe | Sn | S | Estimated | Nominal |
---|---|---|---|---|---|---|
26.51 | 26.44 | 0.00 | 8.07 | 39.01 | Cu3.5Mn0.8Sn1.1S4 | Cu2MnSnS4 |
24.78 | 31.37 | 6.79 | 3.22 | 33.84 | Cu2.8(Mn0.6Fe0.3)Sn1.4S4 | Cu2(Mn0.8Fe0.2)SnS4 |
27.85 | 29.40 | 4.97 | 6.01 | 31.77 | Cu2.3(Mn0.4Fe0.5)Sn1.1S4 | Cu2(Mn0.6Fe0.4)SnS4 |
30.83 | 22.51 | 1.54 | 9.11 | 36.01 | Cu2.4(Mn0.1Fe0.7)Sn0.8S4 | Cu2(Mn0.4Fe0.6)SnS4 |
28.94 | 25.69 | 1.79 | 11.24 | 32.35 | Cu2.3(Mn0.1Fe0.9)Sn1S4 | Cu2(Mn0.2Fe0.8)SnS4 |
29.45 | 0.00 | 26.42 | 11.93 | 32.19 | Cu2.2Fe0.9Sn1S4 | Cu2FeSnS4 |
Cu2MnSnS4 | Cu2(Mn0.8Fe0.2)SnS4 | Cu2(Mn0.6Fe0.4)SnS4 | Cu2(Mn0.4Fe0.6)SnS4 | Cu2(Mn0.2Fe0.8)SnS4 | Cu2FeSnS4 | Interpretation | Literature |
---|---|---|---|---|---|---|---|
617 | 617 | 617 | x | x | x | Mn-S specific vibrations | [45,46,47,48] |
669 | 669 | 669 | 669 | 669 | 669 | metal–thiourea complex – C–S stretching vibration | [49] |
721 | 720 | 721 | 719 | 720 | 719 | metal–O–H vibration | [50] |
861 | 872 | 860 | x | x | x | attributed to the resonance interaction between vibrational modes of sulfide ions in the crystal | [46,47] |
x | x | x | 880 | 885 | 890 | attributed to the resonance interaction between vibrational modes of sulfide ions in the crystal - Fe–S specific vibrations | [46,47,50] |
1020 | 1020 | 1021 | 1020 | 1020 | 1020 | C-S stretching vibration | [49] |
1114 | 1119 | 1117 | x | x | x | Mn-S specific vibrations | [48] |
x | x | x | 1142 | 1142 | 1142 | Fe-S specific vibrations | [50] |
1184 | 1184 | 1184 | 1184 | 1184 | 1184 | metal–thiourea complex - NH2 rocking vibration | [48,51] |
1424 | 1424 | 1424 | 1424 | 1423 | 1424 | metal–thiourea complex – N-C–N stretching and NH2 bending vibrational mode | [49,52] |
1651 | 1649 | 1647 | 1636 | 1636 | 1632 | metal–thiourea complex – N–C–N stretching and NH2 bending vibrational mode | [49,52] |
2351 | 2351 | 2348 | 2351 | 2351 | 2351 | CO2—was not related to the samples | [45] |
2914 | 2913 | 2905 | 2909 | 2897 | 2897 | C–H asymmetric stretching vibration | [45] |
3435 | 3435 | 3435 | 3435 | 3435 | 3435 | attributed to the O–H stretching vibration of H2O | [47,51,53] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waluś, E.; Manecki, M.; Cios, G. Synthesis and Characterization of Cu2FeSnS4–Cu2MnSnS4 Solid Solution Microspheres. Materials 2020, 13, 4440. https://doi.org/10.3390/ma13194440
Waluś E, Manecki M, Cios G. Synthesis and Characterization of Cu2FeSnS4–Cu2MnSnS4 Solid Solution Microspheres. Materials. 2020; 13(19):4440. https://doi.org/10.3390/ma13194440
Chicago/Turabian StyleWaluś, Edyta, Maciej Manecki, and Grzegorz Cios. 2020. "Synthesis and Characterization of Cu2FeSnS4–Cu2MnSnS4 Solid Solution Microspheres" Materials 13, no. 19: 4440. https://doi.org/10.3390/ma13194440
APA StyleWaluś, E., Manecki, M., & Cios, G. (2020). Synthesis and Characterization of Cu2FeSnS4–Cu2MnSnS4 Solid Solution Microspheres. Materials, 13(19), 4440. https://doi.org/10.3390/ma13194440