Joining of the Laminated Electrical Steels in Motor Manufacturing: A Review
Abstract
:1. Introduction
2. The Representative Joining Method
3. Characteristics of the Joined Zone
4. Simulation of the Joining Process
5. Mechanical Properties
6. System to Measure the Magnetic Properties
7. Eddy Current Loss Increase Induced by the Joining Process
8. Stress Induced Magnetic Properties Degradation
9. Comparison between Current Fusion Welding Methods
10. Summary and Future Development
Author Contributions
Funding
Conflicts of Interest
Data Availability Statement
References
- Enokizono, M. Construction of Development Technology of Next Generation Applied Electromagnetic Machinery in Japan. Mater. Sci. Forum 2010, 670, 51–59. [Google Scholar] [CrossRef]
- Miyabe, Y.; Kakema, M.; Saito, T. Searching for Optimal Solutions for Motor Performance Design. SAE Tech. Pap. Ser. 2020. [Google Scholar] [CrossRef]
- Mehdi, M.; He, Y.; Hilinski, E.J.; Kar, N.C.; Edrisy, A. Non-Oriented Electrical Steel with Core Losses Comparable to Grain-Oriented Electrical Steel. J. Magn. Magn. Mater. 2019, 491, 165597. [Google Scholar] [CrossRef]
- Lopez-Perez, D.; Antonino-Daviu, J. Application of Infrared Thermography to Failure Detection in Industrial Induction Motors: Case Stories. IEEE Trans. Ind. Appl. 2017, 53, 1901–1908. [Google Scholar] [CrossRef]
- Liu, C.; Lei, G.; Wang, T.; Guo, Y.; Wang, Y.; Zhu, J. Comparative Study of Small Electrical Machines with Soft Magnetic Composite Cores. IEEE Trans. Ind. Electron. 2016, 64, 1049–1060. [Google Scholar] [CrossRef]
- Krings, A.; Cossale, M.; Tenconi, A.; Soulard, J.; Cavagnino, A.; Boglietti, A. Magnetic Materials Used in Electrical Machines: A Comparison and Selection Guide for Early Machine Design. IEEE Ind. Appl. Mag. 2017, 23, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Krings, A.; Boglietti, A.; Cavagnino, A.; Sprague, S. Soft Magnetic Material Status and Trends in Electric Machines. IEEE Trans. Ind. Electron. 2016, 64, 2405–2414. [Google Scholar] [CrossRef]
- Pluta, W.A. Prediction of Influence of Magnetic Anisotropy on Specific Total Loss in Electrical Steel with Goss Texture. In Proceedings of the 2018 Progress in Applied Electrical Engineering Conference, Koscielisko, Poland, 18–22 June 2018. [Google Scholar]
- Tanaka, I.; Nitomi, H.; Imanishi, K.; Okamura, K.; Yashiki, H. Application of High-Strength Nonoriented Electrical Steel to Interior Permanent Magnet Synchronous Motor. IEEE Trans. Magn. 2013, 49, 2997–3001. [Google Scholar] [CrossRef]
- Tietz, M.; Biele, P.; Janßen, A.; Herget, F.; Telger, K.; Hameyer, K. Application-Specific Development of Non-Oriented Electrical Steel for EV Traction Drives. In Proceedings of the 2012 2nd International Electric Drives Production Conference, Nuremberg, Germany, 15 October 2012. [Google Scholar]
- Oda, Y.; Kohno, M.; Honda, A. Recent Development of Non-Oriented Electrical Steel Sheet for Automobile Electrical Devices. J. Magn. Magn. Mater. 2008, 320, 2430–2435. [Google Scholar] [CrossRef]
- Takajo, S.; Hiratani, T.; Okubo, T.; Oda, Y. Effect of Silicon Content on Iron Loss and Magnetic Domain Structure of Grain-Oriented Electrical Steel Sheet. IEEE Trans. Magn. 2018, 54, 1–6. [Google Scholar] [CrossRef]
- Sidor, Y.; Kovac, F.; Kvačkaj, T.; Sidor, J. Grain Growth Phenomena and Heat Transport in Non-Oriented Electrical Steels. Acta Mater. 2007, 55, 1711–1722. [Google Scholar] [CrossRef]
- Hanitsch, R.E. Rotary and Linear Machines. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 8221–8227. [Google Scholar]
- Beckley, P. Electrical Steels for Rotating Machines; Institution of Engineering and Technology: London, UK, 2002. [Google Scholar]
- Mehdi, M.; He, Y.; Hilinski, E.J. The Evolution of Cube ({001}) Texture in Non-Oriented Electrical Steel. Acta Mater. 2020, 185, 540–554. [Google Scholar] [CrossRef]
- Birosca, S.; Nadoum, A.; Hawezy, D.; Robinson, F.; Kockelmann, W. Mechanistic Approach of Goss Abnormal Grain Growth in Electrical Steel: Theory and Argument. Acta Mater. 2020, 185, 370–381. [Google Scholar] [CrossRef]
- Ahn, Y.K.; Jeong, Y.K.; Kim, T.Y.; Cho, J.U.; Hwang, N.M. Texture evolution of non-oriented electrical steel analyzed by EBSD and in-situ XRD during the phase transformation from γ to α. Mater. Today Commun. 2020, 25, 101307. [Google Scholar] [CrossRef]
- Qin, J.; Liu, D.F.; Zhang, Y.H. Application Status and Development Prospect of Rare Earth in Electrical Steels. J. Iron Steel Res. 2018, 30, 163–170. [Google Scholar]
- Wu, J.; Zhang, L.; Gong, T.; Zhu, J.; Hao, Q.; Qin, Z.; Cong, S.; Zhan, D.; Xiang, Z. Texture Evolution of the Surface Layer of High Silicon Gradient Electrical Steel and Influence on the Magnetic Properties. Vacuum 2015, 119, 189–195. [Google Scholar] [CrossRef]
- Belyaevskikh, A.S.; Lobanov, M.L.; Rusakov, G.M.; Redikul’Tsev, A.A. Improving the Production of Superthin Anisotropic Electrical Steel. Steel Transl. 2015, 45, 982–986. [Google Scholar] [CrossRef] [Green Version]
- Mouriopoulos, C. Production of Silicon Steel Sheet at Dofasco. Steel Times Int. 1989, 13, 36–37. [Google Scholar]
- Petryshynets, I.; Kováč, F.; Füzer, J.; Falat, L.; Puchý, V.; Kollár, P. Evolution of Power Losses in Bending Rolled Fully Finished No Electrical Steel Treated under Unconventional Annealing Conditions. Materials 2019, 12, 2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uesaka, M.; Senda, K.; Oomura, T.; Okabe, S. Influence of Thickness of Non-oriented Electrical Steel on Iron loss under Inverter Excitation. IEEJ Trans. Fundam. Mater. 2018, 138, 367–372. [Google Scholar] [CrossRef]
- Tsuchida, Y.; Yoshino, N.; Enokizono, M. Reduction of Iron Loss on Laminated Electrical Steel Sheet Cores by means of Secondary Current Heating Method. IEEE Trans. Magn. 2017, 53, 1. [Google Scholar] [CrossRef]
- Pugstaller, R.; Wallner, G.M.; Strauß, B.; Fluch, R. Advanced Characterization of Laminated Electrical Steel Structures Under Shear Loading. J. Adhes. 2018, 95, 834–848. [Google Scholar] [CrossRef]
- Peng, K.Y. Advanced Chromium-Free Coating for Electrical Steels. Iron Steel Technol. 2015, 12, 65–70. [Google Scholar]
- Chivavibul, P.; Enoki, M.; Konda, S.; Inada, Y.; Tomizawa, T.; Toda, A. Reduction of Core Loss in Non-Oriented (No) Electrical Steel by Electroless-Plated Magnetic Coating. J. Magn. Magn. Mater. 2011, 323, 306–310. [Google Scholar] [CrossRef]
- Lin, A.; Zhang, X.; Fang, D.; Yang, M.; Gan, F. Study of an Environment-Friendly Insulating Coating with High Corrosion Resistance on Electrical Steel. Anti-Corros. Methods Mater. 2010, 57, 297–304. [Google Scholar] [CrossRef]
- Ke, S.; Qian, X.; Zhu, S. Application of X-Ray Fluorescence Method in the Analysis of Electrical Steel Coating. In Proceedings of the 10th International Conference on Steel Rolling, Beijing, China, 15 September 2010. [Google Scholar]
- Chivavibul, P.; Enoki, M.; Konda, S.; Inada, Y.; Tomizawa, T.; Toda, A. Application of Electroless-Plated Magnetic Coating to Reduce Core Loss of Electrical Steel. Adv. Mater. Res. 2010, 117, 21–25. [Google Scholar] [CrossRef]
- Puzhevich, R.B.; Korzunin, G. Quality Control of the Insulating Coating on Electrical Steel. Russ. J. Nondestruct. Test. 2006, 42, 468–473. [Google Scholar] [CrossRef]
- Loisos, G.; Moses, A.; Beckley, P. Electrical Stress on Electrical Steel Coatings. J. Magn. Magn. Mater. 2003, 254, 340–342. [Google Scholar] [CrossRef]
- Coombs, A.; Lindenmo, M.; Snell, D.; Power, D. Review of the Types, Properties, Advantages, and Latest Developments in Insulating Coatings on Nonoriented Electrical Steels. IEEE Trans. Magn. 2001, 37, 544–557. [Google Scholar] [CrossRef]
- Snell, D.; Coombs, A. Novel Coating Technology for Non-Oriented Electrical Steels. J. Magn. Magn. Mater. 2000, 215, 133–135. [Google Scholar] [CrossRef]
- Lindenmo, M.; Coombs, A.; Snell, D. Advantages, Properties and Types of Coatings on Non-Oriented Electrical Steels. J. Magn. Magn. Mater. 2000, 215, 79–82. [Google Scholar] [CrossRef]
- Schade, T.; Ramsayer, R.M.; Bergmann, J.P. Laser Welding of Electrical Steel Stacks Investigation of the Weldability. In Proceedings of the 4th International Electric Drives Production Conference, Nuremberg, Germany, 30 September 2014. [Google Scholar]
- Sundaria, R.; Daem, A.; Osemwinyen, O. Effects of Stator Core Welding on an Induction Machine—Measurements and Modeling. J. Magn. Magn. Mater. 2020, 499, 166280. [Google Scholar] [CrossRef] [Green Version]
- Vourna, P.; Ktena, A. Metallurgical, Mechanical and Magnetic Properties of Electrical Steel Sheets in TIG and PLASMA Welding. Key Eng. Mater. 2013, 543, 479–482. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Li, S. Laser Welding of Laminated Electrical Steels. J. Mater. Process. Technol. 2016, 230, 99–108. [Google Scholar] [CrossRef]
- Leuning, N.; Steentjes, S.; Weiss, H.A.; Volk, W.; Hameyer, K. Magnetic Material Deterioration of Non-Oriented Electrical Steels as a Result of Plastic Deformation Considering Residual Stress Distribution. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Leuning, N.; Steentjes, S.; Hameyer, K.; Gerhards, B.; Reisgen, U. Analysis of a Novel Laser Welding Strategy for Electrical Steel Laminations. In Proceedings of the 7th International Electric Drives Production Conference, Wurzburg, Germany, 5 December 2017. [Google Scholar]
- Kaido, C.; Takeda, K.; Wakisaka, T.; Mizokami, M. Characteristics of Adhesive Coating Non-oriented Electrical Steel Sheet Cores. IEEJ Trans. Ind. Appl. 1999, 119, 1010–1015. [Google Scholar] [CrossRef] [Green Version]
- Senda, K.; Toda, H.; Kawano, M. Influence of Interlocking on Core Magnetic Properties. IEEJ J. Ind. Appl. 2015, 4, 496–502. [Google Scholar] [CrossRef] [Green Version]
- Dharmik, B.Y.; Lautre, N.K. A Study on Hardness of CRNO Electrical Sheets for Edge Joining Through TIG Welding. In Operations Management and Systems Engineering; Springer Science and Business Media LLC: Singapore, 2019; pp. 689–698. [Google Scholar]
- Schoppa, A.; Schneider, J.; Wuppermann, C.-D.; Bakon, T. Influence of Welding and Sticking of Laminations on the Magnetic Properties of Non-Oriented Electrical Steels. J. Magn. Magn. Mater. 2003, 255, 367–369. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Lai, X. Effects of Interfaces on Heat Transfer in Laser Welding of Electrical Steel Laminations. Int. J. Heat Mass Transf. 2015, 90, 665–677. [Google Scholar] [CrossRef]
- Imamori, S.; Aihara, S.; Shimoji, H.; Kutsukake, A.; Hameyer, K. Evaluation of Local Magnetic Degradation by Interlocking Electrical Steel Sheets for an Effective Modelling of Electrical Machines. J. Magn. Magn. Mater. 2020, 500, 166372. [Google Scholar] [CrossRef]
- Imamori, S.; Steentjes, S.; Hameyer, K. Influence of Interlocking on Magnetic Properties of Electrical Steel Laminations. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kaido, C.; Mogi, H.; Hanzawa, K. The Effect of Short Circuit between Laminated Steel Sheets on the Performance of Lamination Core of Motor. IEEJ Trans. Fundam. Mater. 2003, 123, 857–862. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Chen, K.; Li, S. Comparison of Laser and TIG Welding of Laminated Electrical Steels. J. Mater. Process. Technol. 2017, 247, 55–63. [Google Scholar] [CrossRef]
- Cui, R.; Li, S. Pulsed Laser Welding of Laminated Electrical Steels. J. Mater. Process. Technol. 2020, 285, 116778. [Google Scholar] [CrossRef]
- Vourna, P. Characterization of Electron Beam Welded Non-Oriented Electrical Steel with Magnetic Barkhausen Noise. Key Eng. Mater. 2014, 605, 39–42. [Google Scholar] [CrossRef]
- Dharmik, B.Y.; Lautre, N.K. Performance Assessment of CMT over GTA Welding on Stacked Thin Sheets of CRNGO Electrical Steel. Mater. Lett. 2020, 272, 127901. [Google Scholar] [CrossRef]
- Vegelj, D.; Zajec, B.; Kanitz, A.; Možina, J. Adaptive Pulsed-Laser Welding of Electrical Laminations. Stroj. Vestn. J. Mech. Eng. 2014, 60. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Lai, X. A Model for the Torsion Strength of a Laser-Welded Stator. J. Mater. Process. Technol. 2015, 223, 319–327. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. Modeling of Eddy-Current Losses of Welded Laminated Electrical Steels. IEEE Trans. Ind. Electron. 2017, 64, 2992–3000. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Chen, K. Modeling of Temperature Distribution in Laser Welding of Lapped Martensitic Steel M1500 and Softening Estimation. J. Manuf. Sci. Eng. 2016, 138, 111006. [Google Scholar] [CrossRef]
- Lim, Y.C.; Squires, L.; Pan, T.-Y.; Miles, M.; Song, G.-L.; Wang, Y.; Feng, Z. Study of Mechanical Joint Strength of Aluminum Alloy 7075-T6 and Dual Phase Steel 980 Welded by Friction Bit Joining and Weld-Bonding Under Corrosion Medium. Mater. Des. 2015, 69, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Clerc, A.J.; Muetze, A. Measurement of Stator Core Magnetic Degradation During the Manufacturing Process. IEEE Trans. Ind. Appl. 2012, 48, 1344–1352. [Google Scholar] [CrossRef]
- Nazrulla, S.; Strangas, E.G.; Agapiou, J.S.; Perry, T.A. A Device for the Study of Electrical Steel Losses in Stator Lamination Stacks. IEEE Trans. Ind. Electron. 2013, 61, 2217–2224. [Google Scholar] [CrossRef]
- Lamprecht, E.; Homme, M.; Albrecht, T. Investigations of Eddy Current Losses in Laminated Cores Due to the Impact of Various Stacking Processes. In Proceedings of the 2nd International Electric Drives Production Conference, Nuremberg, Germany, 15 October 2012. [Google Scholar]
- Bali, M.; Muetze, A. Modeling the Effect of Cutting on the Magnetic Properties of Electrical Steel Sheets. IEEE Trans. Ind. Electron. 2016, 64, 2547–2556. [Google Scholar] [CrossRef]
- Schoppa, A.; Schneider, J.; Roth, J.-O. Influence of the Cutting Process on the Magnetic Properties of Non-Oriented Electrical Steels. J. Magn. Magn. Mater. 2000, 215, 100–102. [Google Scholar] [CrossRef]
- Weiss, H.A.; Tröber, P.; Golle, R.; Steentjes, S.; Leuning, N.; Elfgen, S.; Hameyer, K.; Volk, W. Impact of Punching Parameter Variations on Magnetic Properties of Nongrain-Oriented Electrical Steel. IEEE Trans. Ind. Appl. 2018, 54, 5869–5878. [Google Scholar] [CrossRef]
- Yamazaki, K.; Fukushima, W. Loss Analysis of Induction Motors by Considering Shrink Fitting of Stator Housings. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Helbling, H.; Benabou, A.; Van Gorp, A.; El Youssef, M.; Tounzi, A.; Boughanmi, W.; Laloy, D. Effect on Magnetic Properties of Inhomogeneous Compressive Stress in Thickness Direction of an Electrical Steel Stack. J. Magn. Magn. Mater. 2020, 500, 166353. [Google Scholar] [CrossRef]
- Miyagi, D.; Miki, K.; Nakano, M.; Takahashi, N. Influence of Compressive Stress on Magnetic Properties of Laminated Electrical Steel Sheets. IEEE Trans. Magn. 2010, 46, 318–321. [Google Scholar] [CrossRef]
- Urata, S.; Maeda, Y.; Nakai, H.; Takeuchi, Y.; Yun, K.; Yanase, S.; Okazaki, Y. Measuring Iron Loss of the Electrical Steel Sheets with Different Grades under Compressive Stress Normal to the Surface. IEEJ Trans. Fundam. Mater. 2019, 139, 190–196. [Google Scholar] [CrossRef]
- Maeda, Y.; Urata, S.; Nakai, H.; Takeuchi, Y.; Yun, K.; Yanase, S.; Okazaki, Y. Study on Measuring Method of Magnetic Properties under Compressive Stress Normal to the Surface of the Electrical Steel Sheet. IEEJ Trans. Fundam. Mater. 2018, 138, 490–496. [Google Scholar] [CrossRef]
- Ding, X.; Ren, S.; Xiong, Y.; Guo, H.; Xu, J. Iron Loss of Electrical Steel Considering Rotational Magnetization and Laminated Direction Mechanical Stress. In Proceedings of the 2016 IEEE Conference on Electromagnetic Field Computation, Miami, FL, USA, 13 November 2017. [Google Scholar]
- Kai, Y.; Enokizono, M.; Kido, Y. Measurement of Vector Magnetic Properties of a Nonoriented Electrical Steel Sheet under Shear Stress. Electr. Eng. Jpn. 2015, 191, 1–7. [Google Scholar] [CrossRef]
- Kai, Y.; Enokizono, M. Measurement of Two-Dimensional Magnetostriction of a Non-Oriented Electrical Steel Sheet Under Shear Stress. Int. J. Appl. Electromagn. Mech. 2015, 48, 233–238. [Google Scholar] [CrossRef]
- Yamamoto, K.-I.; Yanase, S. Effects of Compressive Stress Normal to the Surface of Non-Oriented Electrical Steel Sheets. Int. J. Appl. Electromagn. Mech. 2014, 44, 271–278. [Google Scholar] [CrossRef]
- Hagihara, H.; Takahashi, Y.; Fujiwara, K.; Ishihara, Y.; Masuda, T. Magnetic Properties Evaluation of Grain-Oriented Electrical Steel Sheets Under Bending Stress. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Kai, Y.; Tsuchida, Y.; Todaka, T.; Enokizono, M. Measurement Method of Vector Magnetic Properties of a Non-oriented Electrical Steel Sheet under Stress Conditions. IEEJ Trans. Fundam. Mater. 2012, 132, 930–935. [Google Scholar] [CrossRef]
- Poulnikov, A.; Permiakov, V.; Melkebeek, J. Investigation of Residual Effects of Tensile Stress on Magnetic Properties of Non-Oriented Electrical Steel. IEEE Int. Trans. Magn. 2003, 38, 3204–3206. [Google Scholar] [CrossRef]
- Karthaus, J.; Elfgen, S.; Hameyer, K. Continuous Local Material Model for the Mechanical Stress-Dependency of Magnetic Properties in Non-Oriented Electrical Steel. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2019, 38, 1075–1084. [Google Scholar] [CrossRef]
- Elfgen, S.; Steentjes, S.; Bohmer, S.; Franck, D.; Hameyer, K. Influences of Material Degradation Due to Laser Cutting on the Operating Behavior of PMSM Using a Continuous Local Material Model. IEEE Trans. Ind. Appl. 2017, 53, 1978–1984. [Google Scholar] [CrossRef]
- Siebert, R.; Schneider, J.; Beyer, E. Laser Cutting and Mechanical Cutting of Electrical Steels and its Effect on the Magnetic Properties. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Leuning, N.; Steentjes, S.; Hameyer, K. Effect of Grain Size and Magnetic Texture on Iron-Loss Components in No Electrical Steel at Different Frequencies. J. Magn. Magn. Mater. 2019, 469, 373–382. [Google Scholar] [CrossRef]
- Leuning, N.; Steentjes, S.; Hameyer, K. Impact of Grain Size Distribution on the Magnetic Deterioration Due to Cutting of Electrical Steel Sheets. J. Magn. Magn. Mater. 2020, 497, 166080. [Google Scholar] [CrossRef]
- Bohdal, Ł.; Patyk, R.; Tandecka, K.; Gontarz, S.; Jackiewicz, D. Influence of Shear-Slitting Parameters on Workpiece Formation, Cut Edge Quality and Selected Magnetic Properties for Grain-Oriented Silicon Steel. J. Manuf. Process. 2020, 56, 1007–1026. [Google Scholar] [CrossRef]
- Saleem, A.; Goldbaum, D.; Brodusch, N.; Gauvin, R.; Chromik, R.R. Microstructure and Mechanical Property Connections for a Punched Non-Oriented Electrical Steel Lamination. Mater. Sci. Eng. A 2018, 725, 456–465. [Google Scholar] [CrossRef]
- Bayraktar, S.; Turgut, Y. Effects of Different Cutting Methods for Electrical Steel Sheets on Performance of Induction Motors. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 232. [Google Scholar] [CrossRef]
- Saleem, A.; Alatawneh, N.; Chromik, R.R.; Lowther, D.A. Effect of Shear Cutting on Microstructure and Magnetic Properties of Non-Oriented Electrical Steel. IEEE Trans. Magn. 2015, 52, 1–4. [Google Scholar] [CrossRef]
- Park, J.S.; Park, J.T. Effect of Stress Relief Annealing Temperature and Atmosphere on the Microstructure and Magnetic Properties of Non-Oriented Electrical Steels. J. Magn. Magn. Mater. 2016, 304, 599–601. [Google Scholar]
- Harstick, H.M.S.; Ritter, M.; Riehemann, W. Influence of Punching and Tool Wear on the Magnetic Properties of Nonoriented Electrical Steel. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Harstick, H.M.S.; Ritter, M.; Plath, A.; Riehemann, W. EBSD Investigations on Cutting Edges of Non-Oriented Electrical Steel. Met. Microstruct. Anal. 2014, 3, 244–251. [Google Scholar] [CrossRef]
- Han, Z.L.; Hu, S.B.; Xiong, X.S. Influence of Punching Process on Microstructure Near Cutting Edge and Magnetic Properties of Non-Oriented Electrical Steel. Cailiao Rechuli Xuebao Trans. Mater. Heat Treat. 2014, 35, 154–159. [Google Scholar]
- Chiang, C.-C.; Knight, A.; Hsieh, M.-F.; Tsai, M.-G.; Liu, B.H.; Chen, I.-G.; Gaing, Z.-L.; Tsai, M.-C. Effects of Annealing on Magnetic Properties of Electrical Steel and Performances of SRM After Punching. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Gaworska-Koniarek, D.; Szubzda, B.; Wilczynski, W.; Drosik, J.; Karaś, K. The Influence of Assist Gas on Magnetic Properties of Electrotechnical Steel Sheets Cut with Laser. J. Phys. Conf. Ser. 2011, 303, 012091. [Google Scholar] [CrossRef] [Green Version]
- Belhadj, A.; Baudouin, P.; Breaban, F.; Deffontaine, A.; Dewulf, M.; Houbaert, Y. Effect of Laser Cutting on Microstructure and on Magnetic Properties of Grain Non-Oriented Electrical Steels. J. Magn. Magn. Mater. 2003, 256, 20–31. [Google Scholar] [CrossRef]
- Qiu, F.; Ren, W.; Tian, G.Y.; Gao, B. Characterization of Applied Tensile Stress Using Domain Wall Dynamic Behavior of Grain-Oriented Electrical Steel. J. Magn. Magn. Mater. 2017, 432, 250–259. [Google Scholar] [CrossRef]
- Zirka, S.E.; Moroz, Y.; Steentjes, S.; Hameyer, K.; Chwastek, K.; Zurek, S.; Harrison, R. Dynamic Magnetization Models for Soft Ferromagnetic Materials With Coarse and Fine Domain Structures. J. Magn. Magn. Mater. 2015, 394, 229–236. [Google Scholar] [CrossRef]
- Schäfer, R.; Soldatov, I.; Arai, S. Power Frequency Domain Imaging on Goss-Textured Electrical Steel. J. Magn. Magn. Mater. 2019, 474, 221–235. [Google Scholar] [CrossRef]
- Harti, R.P.; Strobl, M.; Schäfer, R.; Kardjilov, N.; Tremsin, A.S.; Grünzweig, C. Dynamic Volume Magnetic Domain Wall Imaging in Grain Oriented Electrical Steel at Power Frequencies with Accumulative High-Frame Rate Neutron Dark-Field Imaging. Sci. Rep. 2018, 8, 15754. [Google Scholar] [CrossRef]
- Inada, Y.; Akase, Z.; Shindo, D.; Taniyama, A. Lorentz Microscopy of Magnetic Domain-Wall Pinning on Artificially Introduced Holes in Electrical Steel Sheets. Mater. Trans. 2012, 53, 1330–1333. [Google Scholar] [CrossRef] [Green Version]
- Akase, Z.; Shindo, D.; Inoue, M.; Taniyama, A. Lorentz Microscopic Observations of Electrical Steel Sheets under an Alternating Current Magnetic Field. Mater. Trans. 2007, 48, 2626–2630. [Google Scholar] [CrossRef]
- Akase, Z.; Park, Y.-G.; Shindo, D.; Tomida, T.; Yashiki, H.; Hinotani, S. Magnetic Domain Structures in Electrical Steel Sheets Studied by Lorentz Microscopy and Electron Holography. Mater. Trans. 2005, 46, 974–977. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, M.; Mayr, A.; Seefried, J.; Kuehl, A.; Franke, J. Potentials of Process Monitoring During Laser Welding of Electrical Steel Laminations. In Proceedings of the 9th International Electric Drives Production Conference, Esslingen, Germany, 3 December 2019. [Google Scholar]
- Shimoji, H.; Todaka, T.; Aihara, S. A Thermographic Camera Method for Measuring the Core Loss Distribution. J. Magn. Magn. Mater. 2020, 505, 166679. [Google Scholar] [CrossRef]
- Neuwirth, T.; Backs, A.; Gustschin, A.; Vogt, S.; Pfeiffer, F.; Böni, P.; Schulz, M. A High Visibility Talbot-Lau Neutron Grating Interferometer to Investigate Stress-Induced Magnetic Degradation in Electrical Steel. Sci. Rep. 2020, 10, 1764. [Google Scholar] [CrossRef] [PubMed]
- Kopecký, V.; Fekete, L.; Perevertov, O.; Heczko, O. Changes in Magnetic Domain Structure During Twin Boundary Motion in Single Crystal Ni-Mn-Ga Exhibiting Magnetic Shape Memory Effect. AIP Adv. 2016, 6, 056208. [Google Scholar] [CrossRef] [Green Version]
- D’Silva, G.J.; Feigenbaum, H.P.; Ciocanel, C. Visualization of Magnetic Domains and Magnetization Vectors in Magnetic Shape Memory Alloys Under Magneto-Mechanical Loading. Shape Mem. Superelasticity 2020, 6, 67–88. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Joining Method | Research Content | Year | Reference |
---|---|---|---|
Continuous laser welding | Strength: both the strength and the fatigue behavior of the weld material showed no appreciable difference to the base material; Microstructure: completely ferritic in both the base material and the weld seam; Defect: pores observed in the weld seam | 2014 | [37] |
Continuous laser welding | Model for torsion strength: mathematical model with the function to estimate the strength of the welded laminations based on the welding parameters | 2015 | [56] |
Continuous laser welding | Strength of the welded ring stator: increase with the heat input; Microstructure ferrite in the weld seam; Magnetic property: deteriorate with the heat input | 2016 | [40] |
Continuous laser welding | Simulation of temperature distribution: discontinuous temperature distribution in the heat affected zone due to the hinder of the interface | 2015 | [47] |
Continuous TIG welding | Strength, microstructure, magnetic property: TIG welded joint has higher strength, coarser grain and worse magnetic property than laser welded joint | 2017 | [51] |
Continuous welding | Magnetic property: mathematical model and FEM model were developed to estimate the eddy current loss | 2017 | [57] |
Mechanical joining | Interlaminar eddy currents mainly affect the iron loss of the local zone. | 2017 | [49] |
Glue | Mechanical property: critical adhesive shear angle values of about 5° were obtained for all laminate samples, independent of the steel substrates used to create the laminates | 2018 | [26] |
Adaptive pulsed spot welding | Possibility of the adaptive pulsed spot welding for laminated electrical steels was proved. | 2014 | [55] |
Statistical distribution of single welding spots | The strategy of distributed welding spot shows promising results to decrease the magnetic deterioration, especially as an approach for higher frequency applications | 2018 | [42] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, C.; Wang, H.; Wu, Y.; Wang, H. Joining of the Laminated Electrical Steels in Motor Manufacturing: A Review. Materials 2020, 13, 4583. https://doi.org/10.3390/ma13204583
Xia C, Wang H, Wu Y, Wang H. Joining of the Laminated Electrical Steels in Motor Manufacturing: A Review. Materials. 2020; 13(20):4583. https://doi.org/10.3390/ma13204583
Chicago/Turabian StyleXia, Cunjuan, Hongze Wang, Yi Wu, and Haowei Wang. 2020. "Joining of the Laminated Electrical Steels in Motor Manufacturing: A Review" Materials 13, no. 20: 4583. https://doi.org/10.3390/ma13204583
APA StyleXia, C., Wang, H., Wu, Y., & Wang, H. (2020). Joining of the Laminated Electrical Steels in Motor Manufacturing: A Review. Materials, 13(20), 4583. https://doi.org/10.3390/ma13204583