Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures
Abstract
:1. Introduction
2. Dynamic Mechanical Properties and Constitutive Model of AW 5005
2.1. Aluminum AW 5005 Description
2.2. Material Parameters
3. Dynamic Compression Testing Using SHPB
- -
- The stress and the strain are homogeneous in the specimen.
- -
- The stress is uniaxial in the specimen.
- -
- The elastic wave propagation is one-dimensional (1D) without dispersion in the bars.
4. Description of the Specimen and Hopkinson Bar Device Using the Thermal Chamber
5. Numerical Simulations Analysis Description and Cases Considered
5.1. Specimen Geometry Comparison
5.2. Friction Effect under Dynamic Compression
6. Experimental Results (Validation of Cylinder Sheet Specimen in the SHPB System)
7. Conclusions
- The friction at the interface between the incident/transmission and specimen bars greatly affected the accuracy of the SHPB test results.
- The friction of the interface changed the stress state in the SHPB specimen. Additionally, the mechanical property of the aluminum alloy could be varied from its true value.
- Similar dynamic responses were seen in experimental results for cylinder specimens and cylinder sheets. Cylinder bonded layers could therefore be regarded as a stable alternative composition for enhancing the control of thin sheet material experiments.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. Sect. B 1949, 62, 676–700. [Google Scholar] [CrossRef]
- Chen, Y.; Clausen, A.H.; Hopperstad, O.; Langseth, M. Application of a split-Hopkinson tension bar in a mutual assessment of experimental tests and numerical predictions. Int. J. Impact Eng. 2011, 38, 824–836. [Google Scholar] [CrossRef]
- Challita, G.; Othman, R. Finite-element analysis of SHPB tests on double-lap adhesive joints. Int. J. Adhes. Adhes. 2010, 30, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Li, Q. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments. Int. J. Impact Eng. 2003, 28, 537–555. [Google Scholar] [CrossRef]
- Hao, Y.; Kuang, Z.; Xu, Y.; Walling, B.E.; Lau, G.W. Pyocyanin-induced mucin production is associated with redox modification of FOXA2. Respir. Res. 2013, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Davies, E.; Hunter, S. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J. Mech. Phys. Solids 1963, 11, 155–179. [Google Scholar] [CrossRef]
- Jankowiak, T.; Klepaczko, J.R.; Łodygowski, T. Numerical modeling of wave propagation and interaction in bars. Found. Civ. Environ. Eng. 2006, 7, 187–199. [Google Scholar]
- Pougis, A.; Philippon, S.; Massion, R.; Fauré, L.; Fundenberger, J.-J.; Toth, L.S. Dry friction of steel under high pressure in quasi-static conditions. Tribol. Int. 2013, 67, 27–35. [Google Scholar] [CrossRef]
- Zhong, W.; Rusinek, A.; Jankowiak, T.; Abed, F.; Bernier, R.; Sutter, G. Influence of interfacial friction and specimen configuration in Split Hopkinson Pressure Bar system. Tribol. Int. 2015, 90, 1–14. [Google Scholar] [CrossRef]
- Iwamoto, T.; Yokoyama, T. Effects of radial inertia and end friction in specimen geometry in split Hopkinson pressure bar tests: A computational study. Mech. Mater. 2012, 51, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Jankowiak, T.; Rusinek, A.; Bendarma, A. Protocol to define material behaviour and failure strain level at low and high strain rates based on compression test. J. Theor. Appl. Mech. 2018, 56, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Briscoe, B.; Nosker, R. The influence of interfacial friction on the deformation of high density polyethylene in a split hopkinson pressure bar. Wear 1984, 95, 241–262. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, S. Study on Interface Friction Model for Engineering Materials Testing on Split Hopkinson Pressure Bar Tests. Mod. Mech. Eng. 2013, 3, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Trautmann, A.; Siviour, C.; Walley, S.M.; Field, J. Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar. Int. J. Impact Eng. 2005, 31, 523–544. [Google Scholar] [CrossRef]
- Zhang, L.; He, H.; Li, S.; Wu, X.; Li, L. Dynamic compression behavior of 6005 aluminum alloy aged at elevated temperatures. Vacuum 2018, 155, 604–611. [Google Scholar] [CrossRef]
- Gracio, J.; Barlat, F.; Rauch, E.; Jones, P.T.; Neto, V.; Lopes, A. Artificial aging and shear deformation behaviour of 6022 aluminium alloy. Int. J. Plast. 2004, 20, 427–445. [Google Scholar] [CrossRef]
- Chen, Y.; Clausen, A.; Hopperstad, O.; Langseth, M. Stress–strain behaviour of aluminium alloys at a wide range of strain rates. Int. J. Solids Struct. 2009, 46, 3825–3835. [Google Scholar] [CrossRef] [Green Version]
- Smerd, R.; Winkler, S.; Salisbury, C.; Worswick, M.; Lloyd, D.; Finn, M. High strain rate tensile testing of automotive aluminum alloy sheet. Int. J. Impact Eng. 2005, 32, 541–560. [Google Scholar] [CrossRef]
- Pedersen, K.O.; Børvik, T.; Hopperstad, O.S. Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions. Mater. Des. 2011, 32, 97–107. [Google Scholar] [CrossRef]
- Kulekci, M. Effects of Process Parameters on Tensile Shear Strength of Friction Stir Spot Welded Aluminium Alloy (EN AW 5005). Arch. Met. Mater. 2014, 59, 221–224. [Google Scholar] [CrossRef]
- Bendarma, A.; Jankowiak, T.; Łodygowski, T.; Rusinek, A.; Klosak, M. Experimental and numerical analysis of the aluminum alloy AW5005 behavior subjected to tension and perforation under dynamic loading. J. Theor. Appl. Mech. 2017, 55, 1219. [Google Scholar] [CrossRef] [Green Version]
- Bendarma, A.; Jankowiak, T.; Rusinek, A.; Lodygowski, T.; Klosak, M. Perforation Tests of Aluminum Alloy Specimens for a Wide Range of Temperatures Using High-Performance Thermal Chamber—Experimental and Numerical Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2019, 491, 012027. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Chen, W.W.; Song, B. Split Hopkinson (Kolsky) Bar: Design, Testing and Applications; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Gray, G.T., III. Classic Split Hopkinson Pressure Bar Testing; ASM International: Russell Township, OH, USA, 2000; pp. 462–476. [Google Scholar]
- Nicholas, T. Dynamic Tensile Testing of Structural Materials Using a Split Hopkinson Bar Apparatus; Technical Report AFWAL-TR-80-4053; Defense Technical Information Center (DTIC): Fort Belvoir, VA, USA, 1980. [Google Scholar]
- Sato, Y.; Takeyama, H. The Use of the Split Hopkinson Pressure Bar to Obtain Dynamic Stress/Strain Data at Constant Strain Rates; Technology Reports, Tohoku University: Sendai, Japan, 1978; pp. 303–315. [Google Scholar]
- Rodríguez, J.; Navarro, C.; Sánchez-Gálvez, V. Numerical Assessment of the Dynamic Tension Test Using the Split Hopkinson Bar. J. Test. Eval. 1994, 22, 335–342. [Google Scholar] [CrossRef]
- Davies, R.M. A critical study of the Hopkinson pressure bar. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 240, 375–457. [Google Scholar] [CrossRef]
- Bazle, A.G.; Sergey, L.L.; John, W.G.J. Hopkinson bar experimental technique: A critical review. Appl. Mech. Rev. 2004, 57, 223–250. [Google Scholar]
- Quik, M.; Labibes, K.; Albertini, C.; Valentin, T.; Magain, P. Dynamic Mechanical Properties of Automotive Thin Sheet Steel in Tension, Compression and Shear. Le J. de Phys. IV 1997, 7, C3-379–C3-384. [Google Scholar] [CrossRef]
- Ramesh, K.T. High Rates and Impact Experiments; Springer Science and Business Media: Berlin, Germany, 2008; pp. 929–960. [Google Scholar]
- Gary, G.; Zhao, H. Étude expérimentale du comportement dynamique des matériaux. Mech. Ind. 2000, 1, 15–26. [Google Scholar] [CrossRef]
- Klepaczko, J.; Malinowski, Z. Dynamic Frictional Effects as Measured from the Split Hopkinson Pressure Bar. In High Velocity Deformation of Solids; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1979; pp. 403–416. [Google Scholar]
- Jankowiak, T.; Rusinek, A.; Łodygowski, T. Validation of the Klepaczko–Malinowski model for friction correction and recommendations on Split Hopkinson Pressure Bar. Finite Elem. Anal. Des. 2011, 47, 1191–1208. [Google Scholar] [CrossRef]
- Lennon, A.M.; Ramesh, K.T. A technique for measuring the dynamic behavior of materials at high temperatures. Int. J. Plast. 1998, 14, 1279–1292. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Isaacs, J.B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys. Acta Mater. 1997, 45, 907–919. [Google Scholar] [CrossRef]
- Rusinek, A.; Bernier, R.; Boumbimba, R.M.; Klosak, M.; Jankowiak, T.; Voyiadjis, G. New devices to capture the temperature effect under dynamic compression and impact perforation of polymers, application to PMMA. Polym. Test. 2018, 65, 1–9. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, D.; Rusinek, A.; Bendarma, A.; Bernier, R.; Klosak, M.; Bahi, S. Material and structural behaviour of PMMA from low temperatures to over the glass transition: Quasi-static and dynamic loading. Polym. Test. 2020, 81, 106263. [Google Scholar] [CrossRef]
- Jia, B.; Rusinek, A.; Bahi, S.; Bernier, R.; Pesci, R.; Bendarma, A. Perforation Behavior of 304 Stainless Steel Plates at Various Temperatures. J. Dyn. Behav. Mater. 2019, 5, 416–431. [Google Scholar] [CrossRef]
- Klosak, M.; Rusinek, A.; Bendarma, A.; Jankowiak, T.; Łodygowski, T. Experimental study of brass properties through perforation tests using a thermal chamber for elevated temperatures. Lat. Am. J. Solids Struct. 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, J.Z.; Klepaczko, J.; Kowalewski, Z.L. Miniaturized Compression Test at Very High Strain Rates by Direct Impact. Exp. Mech. 2007, 47, 451–463. [Google Scholar] [CrossRef]
State | Isothermal | Quasi-isothermal/adiabatic | ||||||||
Without inertia effect | With inertia effect | |||||||||
Set-Up | Creep | Construction, excavation | Earthquake, vehicular crash test | Impact, explosion | Nuclear explosion | |||||
Specialized Hydraulic machines | Servo-hydraulic machines | Pneumatic hydraulic machines | Split Hopkinson pressure bar | Impact loading | ||||||
Creep | Quasi-Static | Intermediate strain rate | High strain rate | Very high strain rate |
Chemical Composition % | Fe | Si | Cu | Mn | Mg | Zn | Cr | Al |
0.45 | 0.3 | 0.05 | 0.15 | 0.5–1.1 | 0.2 | 0.1 | Balance |
Mechanical Properties | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation (%) | Hardness (HV) |
45 | 110 | 15 | 32 |
A (MPa) | B (MPa) | n (-) | C (-) | m (-) | |||
---|---|---|---|---|---|---|---|
147 | 60 | 0.9 | 0.003 | 1.08 | 1 | 933 | 300 |
Failure Model Aluminum Alloy (AW 5005) | |||
---|---|---|---|
H (-) | I (-) | J (-) | K (-) |
−0.398 | 1.452 | 1.0085 | 0.6647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bendarma, A.; Jankowiak, T.; Rusinek, A.; Lodygowski, T.; Jia, B.; Miguélez, M.H.; Klosak, M. Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures. Materials 2020, 13, 4614. https://doi.org/10.3390/ma13204614
Bendarma A, Jankowiak T, Rusinek A, Lodygowski T, Jia B, Miguélez MH, Klosak M. Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures. Materials. 2020; 13(20):4614. https://doi.org/10.3390/ma13204614
Chicago/Turabian StyleBendarma, Amine, Tomasz Jankowiak, Alexis Rusinek, Tomasz Lodygowski, Bin Jia, María Henar Miguélez, and Maciej Klosak. 2020. "Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures" Materials 13, no. 20: 4614. https://doi.org/10.3390/ma13204614
APA StyleBendarma, A., Jankowiak, T., Rusinek, A., Lodygowski, T., Jia, B., Miguélez, M. H., & Klosak, M. (2020). Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures. Materials, 13(20), 4614. https://doi.org/10.3390/ma13204614