Hot-Rolling and a Subsequent Direct-Quenching Process Enable Superior High-Cycle Fatigue Resistance in Ultra-High Strength Low Alloy Steels
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
3.1. Microstructure and Phase Analysis Results of the Directly Quenched UHSSs
3.2. Mechanical Properties and Deformation Behaviors of Directly Quenched UHSSs
3.3. High Cycle Fatigue Properties and Fatigue Behaviors of Direct-Quenched UHSSs
4. Discussion
4.1. Tensile Deformation Behaviors
4.2. High-Cycle Fatigue Behaviors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tomita, Y.; Okabayashi, K. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultra strength low alloy steels. Metall. Trans. A 1985, 16A, 485–492. [Google Scholar]
- Miihkinen, V.T.T.; Edmonds, D.V. Microstructural examination of two experimental high-strength bainitic low-alloy steels containing silicon. Mater. Sci. Technol. 1987, 3, 441–449. [Google Scholar] [CrossRef]
- Tomita, Y. Morphology control of ductile second phase and improved mechanical properties in high-strength low-alloy steels with mixed structure. J. Mater. Sci. 1992, 27, 1705–1715. [Google Scholar] [CrossRef]
- Tomita, Y. Development of fracture toughness of ultrahigh strength, medium carbon, low alloy steels for aerospace applications. Int. Mater. Rev. 2000, 45, 27–37. [Google Scholar] [CrossRef]
- Caballero, F.G.; Santofimia, M.J.; García-Mateo, C.; Chao, J.; García de Andeés, C. Theoretical design and advanced microstructure in super high strength steels. Mater. Des. 2009, 30, 2077–2083. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Gu, J.L.; Xu, L.; Shou, F.L.; Bai, B.Z.; Liu, Y.B. Very high cycle fatigue behaviors of Mn-Si-Cr series bainite/martensite dual phase steels. Mater. Des. 2010, 31, 3067–3072. [Google Scholar] [CrossRef]
- Pallaspuro, S.; Kaijalainen, A.; Limnell, T.; Porter, D. Tempering of direct quenched low-alloy ultra-high-strength steel, Part II–mechanical properties. Adv. Mater. Res. 2014, 922, 580–585. [Google Scholar] [CrossRef]
- Saastamoinen, A.; Kaijalainen, A.; Porter, D.; Suikkanen, P.; Yang, J.-R. The effect of finish rolling temperature and tempering on the microstructure, mechanical properties and dislocation density of direct-quenched steel. Mater. Charact. 2018, 139, 1–10. [Google Scholar] [CrossRef]
- Hannula, J.; Porter, D.; Kaijalainen, A.; Somani, M.; Kömi, J. Mechanical properties of direct-quenched ultra-high-strength steel alloyed with molybdenum and niobium. Metals 2019, 12, 396. [Google Scholar] [CrossRef] [Green Version]
- Talebi, S.H.; Nanesa, H.G.; Jahazi, M.; Melkonyan, H. In situ study of phase transformations during non-isothermal tempering of bainitic and martensitic microstructures. Metals 2017, 7, 346. [Google Scholar] [CrossRef]
- Muckelroy, N.C.; Findley, K.O.; Bodnar, R.L. Microstructure and mechanical properties of direct quenched versus conventional reastenitized and quenched plate. J. Mater. Eng. Perform. 2013, 22, 512–522. [Google Scholar] [CrossRef]
- Hwang, G.C.; Lee, S.; Yoo, J.Y.; Choo, W.Y. Effect of direct quenching on microstructure and mechanical properties of copper-bearing high-strength alloy steels. Mater. Sci. Eng. A 1998, 252, 256–268. [Google Scholar] [CrossRef]
- Dhua, S.K.; Sen, S.K. Effect of direct quenching on the microstructure and mechanical properties of the lean-chemistry HSLA-100 steel plates. Mater. Sci. Eng. A 2011, 528, 6356–6365. [Google Scholar] [CrossRef]
- Kaijalainen, A.J.; Suikkanen, P.P.; Limnell, T.J.; Karjalainen, L.P.; Kömi, J.I.; Porter, D.A. Effect of austenite grain structure on the strength and toughness of direct-quenched martensite. J. All. Comp. 2013, 5775, S642–S648. [Google Scholar] [CrossRef]
- Kong, H.; Chao, Q.; Cai, M.H.; Pavlina, E.J.; Rolfe, B.; Hodgson, P.D.; Beladi, H. One-step quenching and partitioning treatment of a commercial low silicon boron steel. Mater. Sic. Eng. A 2017, 707, 538–547. [Google Scholar] [CrossRef]
- Somani, M.C.; Porter, D.A.; Karjalainen, L.P.; Misra, D.K. Evaluation of DQ&P Processing route for the development of ultra-high strength tough ductile steels. Int. J. Metall. Eng. 2013, 2, 154–160. [Google Scholar]
- Song, H.; Zhang, S.; Lan, L.; Li, C.; Liu, H.; Zhao, D.; Wang, G. Effect of direct quenching on microstructure and mechanical properties of a wear-resistant steel. Acta Metall. Sin. 2013, 26, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Xu, Y.; Yang, X.; Liu, Z.; Wu, D. Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel. Mater. Sci. Eng. A 2014, 594, 149–160. [Google Scholar] [CrossRef]
- Mahdi, K.-A.; Abbas, Z.-H.; Hamidreza, A.; Sepideh, G.; Farideh, H.-A.; Leo, K. The effect of martensite-austenite constituent characteristics on the mechanical behavior of quenched-partitioned steel at room temperature. Steel Res. Int. 2018, 1800399, 1–8. [Google Scholar]
- Pezzato, L.; Gennari, C.; Chukin, D.; Toldo, M.; Sella, F.; Toniolo, M.; Zambon, A.; Brunelli, K.; Dabalà, M. Study of the Effect of Multiple Tempering on the Impact Toughness of Forged S690 Structural Steel. Metals 2020, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-I.; Shi, J.; Cao, W.-Q.; Wang, M.-Q.; Xie, G. Effect of direct quenching on microstructure and mechanical properties of medium-carbon Nb-bearing steel. J. Zhejiang Univ. Sci. A 2010, 11, 776–781. [Google Scholar] [CrossRef]
- Maccagno, T.M.; Jonas, J.J.; Yue, S.; McCrady, B.J.; Slobodian, R.; Deeks, D. Determination of recrystallization stop temperature from rolling mill logs and comparison with laboratory simulation results. ISIJ Int. 1994, 34, 917–922. [Google Scholar] [CrossRef]
- Kaijalainen, A.; Pallaspuro, S.; Porter, D.A. Tempering of direct quenched low-alloy ultra-high-strength steel, Part I – microstructure. Adv. Mater. Res. 2014, 922, 316–321. [Google Scholar] [CrossRef]
- Li, C.-N.; Yuan, G.; Ji, F.-Q.; Ren, D.-S.; Wang, G.-D. Effects of auto-tempering on microstructure and mechanical properties in hot rolled paling C-Mn dual phase steels. Mater. Sci. Eng. A 2016, 665, 98–107. [Google Scholar] [CrossRef]
- Park, S.-G.; Lee, K.-H.; Min, K.-D.; Kim, M.-C.; Lee, B.-S. Characterization of phase fractions and misorientations on tempered Bainitic/Martensitic Ni-Cr-Mo low alloy RPV steel with various Ni content. Met. Mater. Int. 2013, 19, 49–54. [Google Scholar] [CrossRef]
- Song, W.; von Appen, J.; Choi, P.; Dronskowski, R.; Raabe, D.; Bleck, W. Atomic-scale investigation of e and h precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations. Acta Mater. 2013, 61, 7582–7590. [Google Scholar] [CrossRef]
- Li, X.; Fan, Y.; Ma, X.; Subramanian, S.V.; Shang, C. Influence of martensite–austenite constituents formed at different intercritical temperatures on toughness. Mater. Des. 2015, 67, 457–463. [Google Scholar] [CrossRef]
- Wang, Y.; Hua, J.; Kong, M.; Zeng, Y.; Liu, J.; Liu, Z. Quantitative analysis of martensite and bainite microstructures using electron backscatter diffraction. Microsc. Res. Tech. 2016, 79, 814–819. [Google Scholar] [CrossRef]
- Li, W.-S.; Gao, H.-Y.; Nakashima, H.; Hata, S.; Tian, W.-H. In-situ EBSD study of deformation behavior of retained austenite in a low-carbon quenching and partitioning steel via uniaxial tensile tests. Mater. Charact. 2016, 118, 431–437. [Google Scholar] [CrossRef]
- Zhong, Y.; Xiao, F.; Zhang, J.; Shan, Y.; Wang, W.; Yang, K. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel. Acta Mater. 2006, 54, 435–443. [Google Scholar] [CrossRef]
- Mohseni, P.; Solberg, J.K.; Karlsen, M.; Akselsen, O.M.; Østby, E. Cleavage fracture initiation at M-A constituents in intercritically coarse-grained heat-affected zone of a HSLA steel. Met. Mater. Trans. A 2014, 45A, 384–394. [Google Scholar] [CrossRef]
- Takayama, N.; Miyamoto, G.; Furuhara, T. Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels. Acta Mater. 2018, 145, 154–164. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, L.-N.; He, J.; Chen, G.-Y.; Li, C.-H.; Lu, X.-G. Effect of controlled rolling/controlled cooling parameters on microstructure and mechanical properties of the novel pipeline steel. Adv. Manuf. 2014, 2, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Shigeru, E.; Naoki, N. Development of thermo-mechanical control process (TMCP) and high performance steel in JFE steel. JFE Tech. Rep. 2015, 20, 1–7. [Google Scholar]
- Sadowski, A.J.; Rotter, J.M.; Stafford, P.J.; Reinke, T.; Ummenhofer, T. On the gradient of the yield plateau in structure carbon steel. J. Constr. Steel Res. 2017, 130, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Saoudi, A.; Fellah, M.; Sedik, A.; Lerari, D.; Khamouli, F.; Atoui, L.; Bachari, K. Assessment and statistical correlation of mechanical properties of double sided single pass submerged arc welded line pipe steel. Eng. Sci. Tech. Int. J. 2020, 23, 452–461. [Google Scholar] [CrossRef]
- Pang, J.C.; Li, S.X.; Wang, Z.G.; Zhang, Z.F. General relation between tensile strength and fatigue strength of metallic materials. Mater. Sci. Eng. A 2013, 564, 331–341. [Google Scholar] [CrossRef]
- Liu, R.; Tian, Y.Z.; Zhang, Z.J.; Zhang, P.; Zhang, Z.F. Fatigue strength plateau induced by microstructure inhomogeneity. Mater. Sci. Eng. A 2017, 702, 259–264. [Google Scholar] [CrossRef]
- Feng, J.; Frankenbach, T.; Wettlufer, M. Strengthening 42CrMo4 steel by isothermal transformation below martensite start temperature. Mater. Sci. Eng. A 2017, 683, 110–115. [Google Scholar] [CrossRef]
- Zhao, W.T.; Huang, X.F.; Huang, W.G. Comparative study on a 0.2C steel treated by Q&P and A&T treatments. Mater. Sci. Technol. 2016, 32, 1374–1381. [Google Scholar]
- Marinelli, M.C.; Alvarez-Armas, I.; Krupp, U. Cyclic deformation mechanisms and microcracks behavior in high-strength bainitic steel. Mater. Sci. Eng. A 2017, 684, 254–260. [Google Scholar] [CrossRef]
- Díaz-Fuentes, M.; Iza-M, A.; Gutiérrez, I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior. Metall. Mater. Trans. A 2003, 34A, 2505–2516. [Google Scholar] [CrossRef]
- Rementeria, R.; Morales-Rivas, L.; Kuntz, M.; Garica-Mateo, C.; Kerscher, E.; Sourmail, T.; Caballero, F.G. On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels. Mater. Sci. Eng. A 2015, 630, 71–77. [Google Scholar] [CrossRef]
- Zhai, T.; Wilkison, A.J.; Martin, J.W. A crystallographic mechanism for fatigue crack propagation through grain boundaries. Acta Mater. 2000, 48, 4917–4927. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, H.; Wang, T. High-cycle, push-pull fatigue fracture behavior of high-C, Si-Al rich nanostructured bainite steel. Materials 2018, 11, 54. [Google Scholar] [CrossRef] [Green Version]
Alloy | Ni | Mn | Cr | C | Si | Mo | Al | V | Ti | B | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A alloy | 3.05 | 0.96 | 0.49 | 0.27 | 0.26 | 0.29 | 0.03 | 0.03 | 0.03 | 0.002 | 0.001 | 0.001 | Bal. |
B alloy | 3.00 | 0.95 | 0.48 | 0.28 | 0.28 | 0.29 | 0.03 | 0.03 | 0.03 | 0.002 | 0.003 | 0.001 | Bal. |
Alloys | Y.S. (MPa) | U.T.S. (MPa) | Total El. (%) |
---|---|---|---|
Alloy A | 1523 (±17) | 2120 (±21) | 0.042 (±0.002) |
Alloy B | 1373 (±15) | 1645 (±19) | 0.043 (±0.002) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, M.-S.; Kim, Y.-K.; Park, T.-W.; Ham, J.; Lee, K.-A. Hot-Rolling and a Subsequent Direct-Quenching Process Enable Superior High-Cycle Fatigue Resistance in Ultra-High Strength Low Alloy Steels. Materials 2020, 13, 4651. https://doi.org/10.3390/ma13204651
Baek M-S, Kim Y-K, Park T-W, Ham J, Lee K-A. Hot-Rolling and a Subsequent Direct-Quenching Process Enable Superior High-Cycle Fatigue Resistance in Ultra-High Strength Low Alloy Steels. Materials. 2020; 13(20):4651. https://doi.org/10.3390/ma13204651
Chicago/Turabian StyleBaek, Min-Seok, Young-Kyun Kim, Tae-Won Park, Jinhee Ham, and Kee-Ahn Lee. 2020. "Hot-Rolling and a Subsequent Direct-Quenching Process Enable Superior High-Cycle Fatigue Resistance in Ultra-High Strength Low Alloy Steels" Materials 13, no. 20: 4651. https://doi.org/10.3390/ma13204651
APA StyleBaek, M. -S., Kim, Y. -K., Park, T. -W., Ham, J., & Lee, K. -A. (2020). Hot-Rolling and a Subsequent Direct-Quenching Process Enable Superior High-Cycle Fatigue Resistance in Ultra-High Strength Low Alloy Steels. Materials, 13(20), 4651. https://doi.org/10.3390/ma13204651