Surface Piezoelectricity and Pyroelectricity in Centrosymmetric Materials: A Case of α-Glycine
Abstract
:1. Introduction
- (a)
- What is the magnitude of the surface piezoelectric effect, which will allow discrimination between the primary and secondary contributions to pyroelectricity.
- (b)
- Does the surface piezoelectric effect vanishes concurrently with the pyroelectric effect or persists for some time after the latter disappears with temperature? If yes, would it imply that the structure first loses polarity but remains for some time non-polar but non-centrosymmetric.
2. Materials and Methods
3. Results and Discussions
3.1. Pyroelectric Measurements
3.2. Piezoelectric Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Piperno, S.; Mirzadeh, E.; Mishuk, E.; Ehre, D.; Cohen, S.; Eisenstein, M.; Lahav, M.; Lubomirsky, I. Water Induced Pyroelectricity from Non-Polar Crystals of Amino Acids. Angew. Chem. Inter. Ed. 2013, 52, 6513–6516. [Google Scholar] [CrossRef]
- Meirzadeh, E.; Sapir, L.; Cohen, H.; Cohen, S.R.; Ehre, D.; Harries, D.; Lahav, M.; Lubomirsky, I. Nonclassical Crystal Growth as Explanation for the Riddle of Polarity in Centrosymmetric Glycine Crystals. JACS 2016, 138, 14756–14763. [Google Scholar] [CrossRef]
- Mishuk, E.; Weissbuch, I.; Lahav, M.; Lubomirsky, I. Pyroelectricity in Nonpolar Directions in Crystals: Enantiomeric Disorder and Surface Wetting in Racemic alpha-Amino-Acids. Cryst. Growth Des. 2014, 14, 3839–3848. [Google Scholar] [CrossRef]
- Dai, S.X.; Gharbi, M.; Sharma, P.; Park, H.S. Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials. J. Appl. Phys. 2011, 110. [Google Scholar] [CrossRef]
- Georgescu, A.B.; Ismail-Beigi, S. Surface Piezoelectricity of (0001) Sapphire. Phys. Rev. Appl. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Munn, R.W. Microscopic Theory of Molecular-Crystal Surface Polarization, Piezoelectricity, and Pyroelectricity. J. Chem. Phys. 1994, 101, 5262–5266. [Google Scholar] [CrossRef]
- Kholkin, A.; Bdikin, I.; Ostapchuk, T.; Petzelt, J. Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy. Appl. Phys. Lett. 2008, 93. [Google Scholar] [CrossRef] [Green Version]
- Tararam, R.; Bdikin, I.K.; Panwar, N.; Varela, J.A.; Bueno, P.R.; Kholkin, A.L. Nanoscale electromechanical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys. 2011, 110. [Google Scholar] [CrossRef] [Green Version]
- Andreeva, N.; Alikin, D.; Turygin, A.; Kholkin, A.L.; Shur, V.Y.; Filimonov, A.; Lessovaia, S. Temperature Dependence of Surface Polar State of SrTiO3 Ceramics Obtained by Piezoresponse Force Microscopy. Ferroelectrics 2015, 477, 1–8. [Google Scholar] [CrossRef]
- Liu, W.Y.; Deng, F.; Xie, S.X.; Shen, S.P.; Li, J.Y. Electromechanical analysis of direct and converse flexoelectric effects under a scanning probe tip. J. Mech. Phys. Solids 2020, 142. [Google Scholar] [CrossRef]
- Ehre, D.; Mirzadeh, E.; Stafsudd, O.; Lubomirsky, I. Pyroelectric Measurement of Surface Layer: The Case of Thin Film on Dielectric Substrate. Ferroelectrics 2014, 472, 41–49. [Google Scholar] [CrossRef]
- Meirzadeh, E.; Christensen, D.V.; Makagon, E.; Cohen, H.; Rosenhek-Goldian, I.; Morales, E.H.; Bhowmik, A.; Lastra, J.M.G.; Rappe, A.M.; Ehre, D.; et al. Surface Pyroelectricity in Cubic SrTiO3. Adv. Mater. 2019, 31, e1904733. [Google Scholar] [CrossRef]
- Meirzadeh, E.; Weissbuch, I.; Ehre, D.; Lahav, M.; Lubomirsky, I. Polar Imperfections in Amino Acid Crystals: Design, Structure, and Emerging Functionalities. Acc. Chem. Res. 2018, 51, 1238–1248. [Google Scholar] [CrossRef]
- Mishuk, E.; Ushakov, A.; Makagon, E.; Cohen, S.R.; Wachtel, E.; Paul, T.; Tsur, Y.; Shur, V.Y.; Kholkin, A.; Lubomirsky, I. Electro-chemomechanical Contribution to Mechanical Actuation in Gd-Doped Ceria Membranes. Adv. Mater. Interfaces 2019, 6, 1801592. [Google Scholar] [CrossRef]
- Mishuk, E.; Ushakov, A.D.; Cohen, S.R.; Shur, V.Y.; Kholkin, A.L.; Lubomirsky, I. Built-in bias in Gd-doped ceria films and its implication for electromechanical actuation devices. Sol. State Ion. 2018, 327, 47–51. [Google Scholar] [CrossRef]
- Ushakov, A.D.; Yavo, N.; Mishuk, E.; Lubomirsky, I.; Shur, V.Y.; Kholkin, A.L. Electromechanical Measurements of Gd-Doped Ceria Thin Films by Laser Interferometry. Sino-Russ. Asrtu Symp. Adv. Mater. Process. Technol. 2016, 2016, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Meirzadeh, E.; Azuri, I.; Qi, Y.; Ehre, D.; Rappe, A.M.; Lahav, M.; Kronik, L.; Lubomirsky, I. Origin and structure of polar domains in doped molecular crystals. Nat. Commun. 2016, 7, 13351. [Google Scholar] [CrossRef] [Green Version]
- Lefki, K.; Dormans, G.J.M. Measurement of Piezoelectric Coefficients of Ferroelectric Thin-Films. J. Appl. Phys. 1994, 76, 1764–1767. [Google Scholar] [CrossRef]
- Kholkin, A.L.; Wutchrich, C.; Taylor, D.V.; Setter, N. Interferometric measurements of electric field-induced displacements in piezoelectric thin films. Rev. Sci. Instr. 1996, 67, 1935–1941. [Google Scholar] [CrossRef]
- Azuri, I.; Meirzadeh, E.; Ehre, D.; Cohen, S.R.; Rappe, A.M.; Lahav, M.; Lubomirsky, I.; Kronik, L. Unusually Large Young’s Moduli of Amino Acid Molecular Crystals. Angew. Chem. Int. Ed. Engl. 2015, 54, 13566–13570. [Google Scholar] [CrossRef]
- Lang, S.B. Pyroelectricity: From ancient curiosity to modern imaging tool. Phys. Today 2005, 58, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Guerin, S.; Stapleton, A.; Chovan, D.; Mouras, R.; Gleeson, M.; McKeown, C.; Noor, M.R.; Silien, C.; Rhen, F.M.F.; Kholkin, A.L.; et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat. Mater. 2018, 17, 180–186. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dishon, S.; Ushakov, A.; Nuraeva, A.; Ehre, D.; Lahav, M.; Shur, V.; Kholkin, A.; Lubomirsky, I. Surface Piezoelectricity and Pyroelectricity in Centrosymmetric Materials: A Case of α-Glycine. Materials 2020, 13, 4663. https://doi.org/10.3390/ma13204663
Dishon S, Ushakov A, Nuraeva A, Ehre D, Lahav M, Shur V, Kholkin A, Lubomirsky I. Surface Piezoelectricity and Pyroelectricity in Centrosymmetric Materials: A Case of α-Glycine. Materials. 2020; 13(20):4663. https://doi.org/10.3390/ma13204663
Chicago/Turabian StyleDishon, Shiri, Andrei Ushakov, Alla Nuraeva, David Ehre, Meir Lahav, Vladimir Shur, Andrei Kholkin, and Igor Lubomirsky. 2020. "Surface Piezoelectricity and Pyroelectricity in Centrosymmetric Materials: A Case of α-Glycine" Materials 13, no. 20: 4663. https://doi.org/10.3390/ma13204663
APA StyleDishon, S., Ushakov, A., Nuraeva, A., Ehre, D., Lahav, M., Shur, V., Kholkin, A., & Lubomirsky, I. (2020). Surface Piezoelectricity and Pyroelectricity in Centrosymmetric Materials: A Case of α-Glycine. Materials, 13(20), 4663. https://doi.org/10.3390/ma13204663