Nanostructured Cobalt Doped Barium Strontium Titanate Thin Films with Potential in CO2 Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Co-Doped BaSrTiO3 Hydrothermal Synthesis
2.2. Deposition Method of Sensing Layer
2.3. Characterization
3. Results and Discussion
3.1. Chemical Composition of Co-Doped BaSrTiO3 Powder
3.2. X-ray Diffraction of Co-Doped BaSrTiO3 Powder
3.3. UV Raman Spectroscopy for Co-Doped BaSrTiO3 Powder
3.4. Scanning Electron Microscopy for Co-Doped BaSrTiO3 Powder
3.5. Dynamic Light Scattering Analysis for BSTCo5 Powder
3.6. Differential Scanning Calorimetry and Thermogravimetry Analysis for BSTCo5 Powder
3.7. Thermal Conductivity Analysis for BSTCo5 Powder
3.8. CO2 Sensing Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on smart gas sensing technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Kobayashi, T. Heteroepitaxial growth of quaternary baxsr1–xtio3 thin films by arf excimer laser ablation. Jpn. J. Appl. Phys. 1994, 33, L533–L536. [Google Scholar] [CrossRef]
- Tombak, A.; Maria, J.P.; Ayguavives, F.T.; Jin, Z.; Stauf, G.T.; Kingon, A.I.; Mortazawi, A. Voltage-controlled RF filters employing thin-film barium-strontium-titanate tunable capacitors. IEEE Trans. Microw. Theory Tech. 2003, 51, 462–467. [Google Scholar] [CrossRef]
- Feng, Z.; Fathelbab, W.M.; Lam, P.G.; Haridasan, V.; Maria, J.P.; Kingon, A.I.; Steer, M.B. Narrowband Barium Strontium Titanate (BST) tunable bandpass filters at X-band. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 1061–1064. [Google Scholar]
- Tariverdian, T.; Behnamghader, A.; Brouki Milan, P.; Barzegar-Bafrooei, H.; Mozafari, M. 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering. Ceram. Int. 2019, 45, 14029–14038. [Google Scholar] [CrossRef]
- Meyer, R.J.; Newnham, R.E.; Amin, A.; Kulwicki, B.M. Flextensional Barium Strontium Titanate Actuators. J. Am. Ceram. Soc. 2003, 86, 934–938. [Google Scholar] [CrossRef]
- Bain, A.K.; Jackson, T.J.; Koutsonas, Y.; Cryan, M.; Yu, S.; Hill, M.; Varrazza, R.; Rorison, J.; Lancaster, M.J. Optical properties of barium strontium titanate(BST) Ferroelectric thin films. Ferroelectr. Lett. Sect. 2007, 34, 149–154. [Google Scholar] [CrossRef]
- Puli, V.S.; Li, P.; Adireddy, S.; Chrisey, D.B. Crystal structure, dielectric, ferroelectric and energy storage properties of La-doped BaTiO3 semiconducting ceramics. J. Adv. Dielectr. 2015, 5. [Google Scholar] [CrossRef]
- Mahmood, W.; Yunus, M.; Ridha, N.J.; Halim, S.A.; Talib, Z.A.; Al-Asfoor, F.K.M.; Primus, W.C. Effect of Sr Substitution on Structure and Thermal Diffusivity of Ba1−xSrxTiO3 Ceramic. Am. J. Eng. Appl. Sci. 2009, 2, 661–664. [Google Scholar]
- Sadeghzadeh Attar, A.; Salehi Sichani, E.; Sharafi, S. Structural and dielectric properties of Bi-doped barium strontium titanate nanopowders synthesized by sol-gel method. J. Mater. Res. Technol. 2017, 6, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Ni, H. Pyroelectric and dielectric properties of sol-gel derived barium-strontium-titanate (Ba0.64Sr0.36TiO3) thin films. Sens. Actuators A Phys. 2002, 100, 252–256. [Google Scholar] [CrossRef]
- Farahani, H.; Wagiran, R.; Yurchenko, O.; Urban, G.A. Barium Strontium Titanate Humidity Sensor: Impact of Doping on the Structural and Electrical Properties. Proceedings 2018, 2, 1007. [Google Scholar] [CrossRef] [Green Version]
- Stanoiu, A.; Piticescu, R.M.; Simion, C.E.; Rusti-Ciobota, C.F.; Florea, O.G.; Teodorescu, V.S.; Osiceanu, P.; Sobetkii, A.; Badilita, V. H2S selective sensitivity of Cu doped BaSrTiO3 under operando conditions and the associated sensing mechanism. Sens. Actuators B Chem. 2018, 264, 327–336. [Google Scholar] [CrossRef]
- Kavitha, V.; Mayandi, J.; Mahalingam, P.; Sethupathi, N. Structural, optical and electrical studies on zinc doped barium strontium titanate as photo-anode for DSSC device. Mater. Today Proc. 2019. [Google Scholar] [CrossRef]
- Li, M.L.; Xu, M.X. Effect of dispersant on preparation of barium-strontium titanate powders through oxalate co-precipitation method. Mater. Res. Bull. 2009, 44, 937–942. [Google Scholar] [CrossRef]
- Kharisov, B.I.; Kharissova, O.V.; Ortiz, U. Microwave Hydrothermal and Solvothermal Processing of Materials and Compounds. In The Development and Application of Microwave Heating; InTech: London, UK, 2012. [Google Scholar]
- Chen, W.; Zhu, Q. Synthesis of barium strontium titanate nanorods in reverse microemulsion. Mater. Lett. 2007, 61, 3378–3380. [Google Scholar] [CrossRef]
- Reshmi, R.; Asha, A.S.; Krishnaprasad, P.S.; Jayaraj, M.K.; Sebastian, M.T. High tunability of pulsed laser deposited Ba0.7Sr0.3TiO3 thin films on perovskite oxide electrode. J. Alloys Compd. 2011, 509, 6561–6566. [Google Scholar] [CrossRef]
- Liu, C.; Liu, P. Microstructure and dielectric properties of BST ceramics derived from high-energy ball-milling. J. Alloys Compd. 2014, 584, 114–118. [Google Scholar] [CrossRef]
- Razak, K.A.; Asadov, A.; Gao, W. Phase content and dielectrical properties of sintered BaSrTiO ceramics prepared by a high temperature hydrothermal technique. Ceram. Int. 2009, 35, 2781–2787. [Google Scholar] [CrossRef]
- Rusti, C.F.; Badilita, V.; Sofronia, A.M.; Taloi, D.; Anghel, E.M.; Maxim, F.; Hornoiu, C.; Munteanu, C.; Piticescu, R.M.; Tanasescu, S. Thermodynamic properties of the Ba0.75Sr0.25TiO3 nanopowders obtained by hydrothermal synthesis. J. Alloys Compd. 2017, 693, 1000–1010. [Google Scholar] [CrossRef]
- Sasirekha, N.; Rajesh, B.; Chen, Y.W. Hydrothermal synthesis of barium titanate: Effect of titania precursor and calcination temperature on phase transition. Ind. Eng. Chem. Res. 2008, 47, 1868–1875. [Google Scholar] [CrossRef]
- Mi, G.; Horvath, C.; Aktary, M.; Van, V. Silicon microring refractometric sensor for atmospheric CO2 gas monitoring. Opt. Express 2016, 24, 1773. [Google Scholar] [CrossRef]
- Scholz, L.; Ortiz Perez, A.; Bierer, B.; Wöllenstein, J.; Palzer, S. Gas sensors for climate research. J. Sens. Sens. Syst. 2018, 7, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Satyanarayana, L.; Noh, W.S.; Lee, W.Y.; Jin, G.H.; Park, J.S. A high temperature potentiometric CO2 sensor mixed with binary carbonate and glassy ceramic oxide. Mater. Chem. Phys. 2009, 114, 827–831. [Google Scholar] [CrossRef]
- Pandey, S.K.; Kim, K.-H. The Relative Performance of NDIR-based Sensors in the Near Real-time Analysis of CO2 in Air. Sensors 2007, 7, 1683–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsubara, S.; Kaneko, S.; Morimoto, S.; Shimizu, S.; Ishihara, T.; Takita, Y. Practical capacitive type CO2 sensor using CeO2/BaCO3/CuO ceramics. Sens. Actuators B Chem. 2000, 65, 128–132. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Qin, H.; Zhang, H.; Zhang, Z.; Zhou, G.; Gao, C.; Hu, J. CO2 sensing properties and mechanism of PrFeO3 and NdFeO3 thick film sensor. J. Rare Earths 2019, 37, 80–87. [Google Scholar] [CrossRef]
- Ghosh, A.; Zhang, C.; Shi, S.; Zhang, H. High temperature CO2 sensing and its cross-sensitivity towards H2 and CO gas using calcium doped ZnO thin film coated langasite SAW sensor. Sens. Actuators B Chem. 2019, 301, 126958. [Google Scholar] [CrossRef]
- Motoc, A.M.; Valsan, S.; Slobozeanu, A.E.; Corban, M.; Valerini, D.; Prakasam, M.; Botan, M.; Dragut, V.; Vasile, B.S.; Surdu, A.V.; et al. Design, Fabrication, and Characterization of New Materials Based on Zirconia Doped with Mixed Rare Earth Oxides: Review and First Experimental Results. Metals (Basel) 2020, 10, 746. [Google Scholar] [CrossRef]
- Sobetkii, A.; Vișan, M.; Piticescu, R.M.; Ciobota (Ruști), C.F.; Motoc, A.M.; Ionică, M.; Ulieru, D. Cu Doped BST Thin Films Deposition Process by RF-Sputtering Method. Patent No. 131119, 30 July 2019. [Google Scholar]
- Stanoiu, A.; Simion, C.E.; Calderon-Moreno, J.M.; Osiceanu, P.; Florea, M.; Teodorescu, V.S.; Somacescu, S. Sensors based on mesoporous SnO2-CuWO4 with high selective sensitivity to H2S at low operating temperature. J. Hazard. Mater. 2017, 331, 150–160. [Google Scholar] [CrossRef]
- Jartych, E.; Pikula, T.; Garbarz-Glos, B.; Panek, R. Mössbauer Spectroscopy Studies of Fe-Doped BaTiO3 Ceramics. Acta Phys. Pol. A 2018, 134, 1058–1062. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Trofimov, E.A.; Zhivulin, V.E.; Gudkova, S.A.; Zaitseva, O.V.; Zherebtsov, D.A.; Starikov, A.Y.; Sherstyuk, D.P.; Amirov, A.A.; Kalgin, A.V.; et al. High Entropy Oxide Phases with Perovskite Structure. Nanomaterials 2020, 10, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bomlai, P.; Sirikulrat, N.; Brown, A.; Milne, S.J. Effects of TiO2 and SiO2 additions on phase formation, microstructures and PTCR characteristics of Sb-doped barium strontium titanate ceramics. J. Eur. Ceram. Soc. 2005, 25, 1905–1918. [Google Scholar] [CrossRef]
- Didomenico, M.; Wemple, S.H.; Porto, S.P.S.; Bauman, R.P. Raman spectrum of single-domain BaTiO3. Phys. Rev. 1968, 174, 522–530. [Google Scholar] [CrossRef]
- Smith, M.B.; Page, K.; Siegrist, T.; Redmond, P.L.; Walter, E.C.; Seshadri, R.; Brus, L.E.; Steigerwald, M.L. Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 2008, 130, 6955–6963. [Google Scholar] [CrossRef]
- Slodczyk, A.; Colomban, P. Probing the Nanodomain Origin and Phase Transition Mechanisms in (Un)Poled PMN-PT Single Crystals and Textured Ceramics. Materials 2010, 3, 5007–5028. [Google Scholar] [CrossRef] [PubMed]
- Tenne, D.A.; Xi, X. Raman Spectroscopy of Ferroelectric Thin Films and Superlattices. J. Am. Ceram. Soc. 2008, 91, 1820–1834. [Google Scholar] [CrossRef] [Green Version]
- Zribi, O.; Garbovskiy, Y.; Glushchenko, A. Single-step colloidal processing of stable aqueous dispersions of ferroelectric nanoparticles for biomedical imaging. Mater. Res. Express 2015, 1, 045401. [Google Scholar] [CrossRef]
- Simões, A.Z.; Moura, F.; Onofre, T.B.; Ramirez, M.A.; Varela, J.A.; Longo, E. Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles. J. Alloys Compd. 2010, 508, 620–624. [Google Scholar] [CrossRef]
- Rout, S.K.; Panigrahi, S. Mechanism of phase formation of BaTiO 3-SrTiO 3 solid solution through solid—Oxide reaction. Indian J. Pure Appl. Phys. 2006, 44, 606–611. [Google Scholar]
- He, Y. Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics. Thermochim. Acta 2004, 419, 135–141. [Google Scholar] [CrossRef]
- Shirane, G.; Takeda, A. Transition. Energy and Volume Change at Three Transitions in Barium Titanate. J. Phys. Soc. Jpn. 1952, 7, 1–4. [Google Scholar] [CrossRef]
- Popescu, G.; Moldovan, P.; Bejan, S.; Miculescu, M.; Miculescu, F. Thermophysical properties and microstructural analysis of AZ80 magnesium alloys designed for automotive industry. In Proceedings of the Materials Science and Technology Conference and Exhibition, MS and T’08, Pittsburgh, PA, USA, 5–9 October 2008. [Google Scholar]
- Gas Sensing Performance of Pure and Modified BST Thick Film Resistor. Available online: https://www.researchgate.net/publication/291160745_Gas_Sensing_Performance_of_Pure_and_Modified_BST_Thick_Film_Resistor (accessed on 8 October 2020).
- Sediments, Diagenesis, and Sedimentary Rocks, 1st ed. Available online: https://www.elsevier.com/books/sediments-diagenesis-and-sedimentary-rocks/mackenzie/978-0-08-044849-7 (accessed on 22 September 2020).
- Chen, Z.; Concepcion, J.J.; Brennaman, M.K.; Kang, P.; Norris, M.R.; Hoertz, P.G.; Meyer, T.J. Splitting CO2 into CO and O2 by a single catalyst. Proc. Natl. Acad. Sci. USA 2012, 109, 15606–15611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chemical Analysis wt.% | |||
---|---|---|---|
Ba | Sr | Ti | Co |
41.2 ± 0.5 | 10.2 ± 0.7 | 21.1 ± 0.4 | 1.35 ± 0.3 |
Temperature (°C) | ΔH (J/mol) | Mass Loss (mg) | Mass Loss (%) | Observation |
---|---|---|---|---|
27–280 | - | 0.069 | 0.6 | Release of Adsorbed Water |
280–450 | - | 0.064 | 0.5 | Chemisorbed Water or Hydroxyl Groups |
450–730 | - | - | - | No Mass Loss |
836 | 8038 | 0.121 | 0.1 | Polymorphic Transformation of BaCO3 |
Material | k (W/mK) | α (mm2/s) | Volumetric Cp (106 J/m3K) | Cp (J/gK) | Ref. |
---|---|---|---|---|---|
BSTCo5 | 0.40 ± 0.01 | 0.26 ± 0.02 | 1.513 ± 0.09 | 0.576 | Present work |
BT Provider A | 2.61 ± 0.02 | 1.03 ± 0.01 | 2.532 calculated | 0.434 ± 0.004 | [42] |
BT Provider B | 2.85 ± 0.04 | 1.18 ± 0.02 | 2.411 calculated | 0.406 ± 0.008 |
50% RH | 400 ppm CO2 | 1000 ppm CO2 | 2000 ppm CO2 | 3000 ppm CO2 | ||||
---|---|---|---|---|---|---|---|---|
Transients | τresponse | τrecovery | τresponse | τrecovery | τresponse | τrecovery | τresponse | τrecovery |
Minutes | 9 | 8 | 13 | 7 | 6 | 7 | 12 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciobota, C.F.; Piticescu, R.M.; Neagoe, C.; Tudor, I.A.; Matei, A.; Dragut, D.V.; Sobetkii, A.; Anghel, E.M.; Stanoiu, A.; Simion, C.E.; et al. Nanostructured Cobalt Doped Barium Strontium Titanate Thin Films with Potential in CO2 Detection. Materials 2020, 13, 4797. https://doi.org/10.3390/ma13214797
Ciobota CF, Piticescu RM, Neagoe C, Tudor IA, Matei A, Dragut DV, Sobetkii A, Anghel EM, Stanoiu A, Simion CE, et al. Nanostructured Cobalt Doped Barium Strontium Titanate Thin Films with Potential in CO2 Detection. Materials. 2020; 13(21):4797. https://doi.org/10.3390/ma13214797
Chicago/Turabian StyleCiobota, Cristina F., Roxana M. Piticescu, Ciprian Neagoe, Ioan A. Tudor, Alexandru Matei, Dumitru V. Dragut, Arcadie Sobetkii, Elena M. Anghel, Adelina Stanoiu, Cristian E. Simion, and et al. 2020. "Nanostructured Cobalt Doped Barium Strontium Titanate Thin Films with Potential in CO2 Detection" Materials 13, no. 21: 4797. https://doi.org/10.3390/ma13214797
APA StyleCiobota, C. F., Piticescu, R. M., Neagoe, C., Tudor, I. A., Matei, A., Dragut, D. V., Sobetkii, A., Anghel, E. M., Stanoiu, A., Simion, C. E., Florea, O. G., & Bejan, S. E. (2020). Nanostructured Cobalt Doped Barium Strontium Titanate Thin Films with Potential in CO2 Detection. Materials, 13(21), 4797. https://doi.org/10.3390/ma13214797