Theoretical Investigation on Photophysical Properties of Triphenylamine and Coumarin Dyes
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Geometry
3.2. Frontier Molecular Orbital
3.3. Absorption Spectra
3.4. Hyperpolarizability
3.5. Driving Force of Electron Injection
3.6. Chemical Parameters
3.7. Fluorescent Lifetime
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- O’Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Urbani, M.; Ragoussi, M.E.; Nazeeruddin, M.K.; Torres, T. Phthalocyanines for dye-sensitized solar cells. Coord. Chem. Rev. 2019, 381, 1–64. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.C.; Wang, W.H.; Gurzadyan, G.G.; Li, J.J.; Li, X.X.; An, J.C.; Yu, Z.; Wang, H.X.; Cai, B.; et al. 13.6% Efficient Organic Dye-Sensitized Solar Cells by Minimizing Energy Losses of the Excited State. ACS Energy Lett. 2019, 4, 943–951. [Google Scholar] [CrossRef]
- Samae, R.; Surawatanawong, P.; Eiamprasert, U.; Pramjit, S.; Saengdee, L.; Tangboriboonrat, P.; Kiatisevi, S. Effect of Thiophene Spacer Position in Carbazole-Based Dye Sensitized Solar Cells on Photophysical, Electrochemical and Photovoltaic Properties. Eur. J. Org. Chem. 2016, 21, 3536–3549. [Google Scholar] [CrossRef]
- Venkatesan, S.; Lin, W.H.; Teng, H.S.; Lee, Y.L. High-Efficiency Bifacial Dye-Sensitized Solar Cells for Application under Indoor Light Conditions. ACS Appl. Mater. Interfaces 2019, 11, 42780–42789. [Google Scholar] [CrossRef] [PubMed]
- Br´edas, J.L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers: A Molecular Picture. Chem. Rev. 2004, 104, 4971–5004. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.; Rashidi, S.; Wang, H.; Wei, W. Recent Progress of Graphene-Based Photoelectrode Materials for Dye-Sensitized Solar Cells. Int. J. Photoenergy 2019, 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, G.R.; Ratner, M.A.; Marks, T.J.; Am, J. Hopping transport in conductive heterocyclic oligomers: Reorganization energies and substituent effects. J. Am. Chem. Soc. 2005, 127, 2339–2350. [Google Scholar] [CrossRef]
- Rondan-Gomez, V.; Montoya, I.; De Los Santos, D. Seuret-Jimenezadvances in dye-sensitized solar cells. Appl. Phys. A-Mater. Sci. Process. 2019, 125, 836. [Google Scholar] [CrossRef]
- Babu, D.D.; Naik, P.; Keremane, K.S. A simple D-A-π-A configured carbazole based dye as an active photo-sensitizer: A comparative investigation on different parameters of cell. J. Mol. Liq. 2020, 310, 113189. [Google Scholar] [CrossRef]
- Ooyama, Y.; Inoue, S.; Nagano, T.; Kushimoto, K.; Ohshita, J.; Imae, I.; Komaguchi, K.; Harima, Y. Dye-Sensitized Solar Cells Based On Donor–Acceptor π-Conjugated Fluorescent Dyes with a Pyridine Ring as an Electron-Withdrawing Anchoring Group. Angew. Chem. Int. Ed. 2011, 123, 7567–7571. [Google Scholar] [CrossRef]
- Lu, J.F.; Xu, X.B.; Cao, K.; Cui, J.; Zhang, Y.B.; Shen, Y.; Shi, X.B.; Liao, L.S.; Cheng, Y.B.; Wang, M.K. D–π–A structured porphyrins for efficient dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 10008–10015. [Google Scholar] [CrossRef]
- Ooyama, Y.; Yamaguchi, N.; Imae, I.; Komaguchi, K.; Ohshita, J.; Harima, Y. Dye-sensitized solar cells based on D–π–A fluorescent dyes with two pyridyl groups as an electronwithdrawing–injecting anchoring group. Chem. Commun. 2013, 49, 2548–2550. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.S.; Liu, F. Structure-property relationships of organic dyes with D-π-A structure in dye-sensitized solar cells. Front. Chem. China 2010, 5, 150–161. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Tian, H.R. Molecular engineering of metal-free organic sensitizers with polycyclic benzenoid hydrocarbon donor for DSSC applications: The effect of the conjugate mode. Sol. Energy 2020, 198, 239–246. [Google Scholar] [CrossRef]
- Pati, P.B.; Yang, W.X.; Zade, S.S. New dyes for DSSC containing triphenylamine based extended donor: Synthesis, photophysical properties and device performance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 178, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Estrella, L.L.; Lee, S.H.; Kim, P.H. New semi-rigid triphenylamine donor moiety for D-π-A sensitizer: Theoretical and experimental investigations for DSSCs. Dyes Pigment. 2019, 165, 1–10. [Google Scholar] [CrossRef]
- Kotteswaran, S.; Mohankumar, V.; Senthil Pandian, M.; Ramasamy, P. Effect of dimethylaminophenyl and thienyl donor groups on Zn-Porphyrin for dye sensitized solar cell(DSSC) applications. Inorg. Chim. Acta 2017, 467, 256–263. [Google Scholar] [CrossRef]
- Ferreira, E.; Poul, P.L.; Cabon, N.; Caro, B.; Guen, F.R.; Pellegrin, Y.; Planchat, A.; Odobel, F. New D-π-A-conjugated organic sensitizers based on α-pyranylidene donors for dye-sensitized solar cells. Tetrahedron Lett. 2017, 58, 995–999. [Google Scholar] [CrossRef]
- Urbani, M.; Sari, F.A.; Grätzel, M.; Nazeeruddin, M.K.; Torres, T.; Ince, M. Effect of Peripheral Substitution on the Performance of Subphthalocyanines in DSSCs. Chem.-An Asian J. 2016, 11, 1223–1231. [Google Scholar] [CrossRef]
- Obasuyi, A.R.; Glossman-Mitnik, D.; Flores-Holguín, N. Theoretical modifcations of the molecular structure of Aurantinidin and Betanidin dyes to improve their effciency as dye-sensitized solar cells. J. Comput. Electron. 2020, 19, 507–515. [Google Scholar] [CrossRef]
- Slimi, A.; Hachi, M.; Fitri, A.; Benjelloun, A.T.; Elkhattabi, S.; Benzakour, M.; Mcharfi, M.; Khenfouch, M.; Zorkani, I.; Bouachrine, M. Effects of electron acceptor groups on triphenylamine based dyes for dye-sensitized solar cells: Theoretical investigation. J. Photochem. Photobiol. A Chem. 2020, 398, 112572. [Google Scholar] [CrossRef]
- Pounraj, P.; Mohankumar, V.; Pandian, M.S.; Ramasamy, P. Donor functionalized quinoline based organic sensitizers for dye sensitized solar cell (DSSC) applications: DFT and TD-DFT investigations. J. Mol. Model. 2018, 24, 343. [Google Scholar] [CrossRef]
- Arooj, Q.; Wilson, G.J.; Wang, F. Methodologies in Spectral Tuning of DSSC Chromophores through Rational Design and Chemical-Structure Engineering. Materials 2019, 12, 4024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang-aroon, W.; Saekow, S.; Amornkitbamrung, V.; Photochem, J. Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 2012, 236, 35–40. [Google Scholar] [CrossRef]
- Xu, Z.J.; Li, Y.M.; Li, Y.; Yuan, S.D.; Hao, L.Z.; Gao, S.L.; Lu, X.Q. Theoretical study of T shaped phenothiazine/carbazole based organic dyes with naphthalimide as π-spacer for DSSCs. Dyes Pigment. 2020, 233, 118201. [Google Scholar] [CrossRef] [PubMed]
- Hosseinnezhad, M.; Gharanjig, K.; Moradian, S. New D–A–π–A organic photo-sensitizer with thioindoxyl group for efcient dye-sensitized solar cells. Chem. Papers 2020, 74, 1487–1494. [Google Scholar] [CrossRef]
- Hemavathi, B.; Jayadev, V.; Ramamurthy, P.C.; Pai, R.K.; Unni, K.N.N.; Ahipa, T.N.; Soman, S.; Balakrishna, R.G. Variation of the donor and acceptor in D-A-π-A based cyanopyridine dyes and its effect on dye sensitized solar cells. New J. Chem. 2019, 43, 15673–15680. [Google Scholar] [CrossRef] [Green Version]
- Liang, M.; Xu, W.; Cai, F.S.; Chen, P.Q.; Peng, B.; Chen, J.; Li, Z.M. New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 2007, 111, 4465–4472. [Google Scholar] [CrossRef]
- Abro, H.; Zhou, T.; Han, W.; Xue, T.; Wang, T. Carbazole-based compounds containing aldehyde and cyanoacetic acid: Optical properties and applications in photopolymerization. RSC Adv. 2017, 7, 55382. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.Y.; Tsai, C.H.; Wong, K.T.; Huang, T.W.; Hsieh, L. Organic Dyes Containing Coplanar Diphenyl- Substituted Dithienosilole Core for Efficient Dye-Sensitized Solar Cells. J. Org. Chem. 2010, 75, 4778–4785. [Google Scholar] [CrossRef]
- Ordon, P.; Tachibana, A. Investigation of the role of the C-PCM solvent effect in reactivity indices. J. Chem. Sci. 2001, 117, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Martins, S.; Candeias, A.; Caldeira, A.T.; Pereira, A. 7-(diethylamino)-4-methyl-3-vinylcoumarin as a new important intermediate to the synthesis of photosensitizers for DSSCs and fluorescent labels for biomolecules. Dyes Pigment. 2020, 174, 108026. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Quantum Density Oscillations in an Inhomogeneous Electron Gas. Phys. Rev. 1965, 135, A1697–A1705. [Google Scholar] [CrossRef]
- Becke, A.D. Density-fnnctional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Stratmann, R.E.; Scuseria, G.E.; Frisch, M.J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218–8224. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Elmorsy, M.R.; Su, R.; Fadda, A.A.; Etman, H.A.; Tawfik, E.H.; El-Shafei, A. Molecular design and synthesis of novel metal-free organic sensitizers with D-π-A-π-A architecture for DSSC application: The effect of the anchoring group. Dyes Pigment. 2018, 158, 121–130. [Google Scholar] [CrossRef]
- Kleinman, D.A. Nonlinear dielectric polarization in optical media. Phys. Rev. 1962, 126, 1977–1979. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y.Z.; Song, P.; Yang, Y.; Ma, F. Enhancement of one- and two-photon absorption and visualization of intramolecular charge transfer of pyrenyl-contained derivatives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 245, 118897. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Calmani, G.S.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09 Revision A.1.; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Estrella, L.L.; Kim, D.H. Theoretical design and characterization of NIR porphyrin-based sensitizers for applications in dye-sensitized solar cells. Sol. Energy 2019, 188, 1031–1040. [Google Scholar] [CrossRef]
- Li, H.; Han, J.H.; Zhao, H.F.; Liu, X.C.; Luo, Y.; Shi, Y.; Liu, C.L.; Jin, M.X.; Ding, D.J. Lighting up the invisible twisted intramolecular charge transfer state by high pressure. J. Phys. Chem. Lett. 2019, 10, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Sanusia, K.; Fatomi, N.O.; Borisade, A.O.; Yilmaz, Y. An approximate procedure for profiling dye molecules with potentials as sensitizers in solar cell application: A DFT/ TD-DFT approach. Chem. Phys. Lett. 2019, 723, 111–117. [Google Scholar] [CrossRef]
- Grätzel, M. Recent Advances in Sensitized Mesoscopic Solar Cells. Acc. Chem. Res. 2009, 42, 1788–1798. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Fischer, M.K.R.; Baüerle, P.A. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angew. Chem. Int. Ed. 2009, 48, 2474–2499. [Google Scholar] [CrossRef] [PubMed]
- Meier, H.; Huang, Z.S.; Cao, D. Double D-π-A Branched Dyes-A New Class of Metal-Free Organic Dyes for Efficient Dye-Sensitized Solar Cells. J. Mater. Chem. C 2017, 5, 9828–9837. [Google Scholar] [CrossRef]
- Qin, C.Y.; Clark, A.E. DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells. Chem. Phys. Lett. 2007, 438, 26–30. [Google Scholar] [CrossRef]
- Ning, Z.J.; Fu, Y.; Tian, H. Improvement of dye-sensitized solar cells: What we know and what we need to know. Energy Environ. Sci. 2010, 3, 1170–1181. [Google Scholar] [CrossRef]
- Eriksson, S.K.; Josefsson, I.; Ellis, H.; Amat, A.; Pastore, M.; Oscarsson, I.; Rensmo, H. Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT. Phys. Chem. Chem. Phys. 2016, 18, 252–260. [Google Scholar] [CrossRef]
- Olbrechts, G.; Munters, T.; Clays, K.; Persoons, A.; Kim, O.K.; Choi, L.S. High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering. Opt. Mater. 1999, 12, 221–224. [Google Scholar] [CrossRef]
- Zhao, D.P.; Saputra, R.M.; Song, P.; Yang, Y.H.; Ma, F.C.; Li, Y.Z. Enhanced photoelectric and photocatalysis performances of quinacridone derivatives by forming D-π-A-A structure. Sol. Energy 2020, 201, 872–883. [Google Scholar] [CrossRef]
- Mao, L.M.; Wu, Y.X.; Jiang, J.M.; Guo, X.G.; Heng, P.P.; Wang, L.; Zhang, J.L. Rational Design of Phenothiazine-Based Organic Dyes for Dye-Sensitized Solar Cells: The Influence of pi-Spacers and Intermolecular Aggregation on Their Photovoltaic Performances. J. Phys. Chem. C 2020, 124, 9233–9242. [Google Scholar] [CrossRef]
- Wang, X.F.; Li, Y.Z.; Song, P.; Ma, F.C.; Yang, Y.H. Effect of graphene between photoanode and sensitizer on the intramolecular and intermolecular electron transfer process. Phys. Chem. Chem. Phys. 2020, 22, 6391–6400. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Lian, T.Q. Ultrafast electron transfer at the molecule- semiconductor nanoparticle interface. Annu. Rev. Phys. Chem. 2004, 56, 491–519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.L.; Zou, L.Y.; Ren, A.M.; Liu, Y.F.; Feng, J.K.; Sun, C.C. Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers. Dyes Pigment. 2013, 96, 349–363. [Google Scholar] [CrossRef]
- Le, B.T.; Pauporté, T.; Scalmani, G.; Adamo, C.; Ciofini, I. A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2009, 11, 11276–11284. [Google Scholar]
- Samanta, P.N.; Majumdar, D.; Roszak, S.; Leszczynski, J. First-principles approach for assessing cold electron injection efficiency of dye-sensitized solar cell: Elucidation of mechanism of charge injection and recombination. J. Phys. Chem. C 2020, 124, 2817–2836. [Google Scholar] [CrossRef]
Condition | Dye | α1 | α2 | α3 | α4 | d1 | d2 | d3 | d4 |
---|---|---|---|---|---|---|---|---|---|
Vacuum | TPCTh | 30.74 | 42.39 | −0.97 | −0.53 | 1.408 | 1.480 | 1.459 | 1.425 |
TPCRh | 32.51 | 42.96 | 0.58 | −178.79 | 1.408 | 1.480 | 1.458 | 1.430 | |
Dye 10 | 15.29 | 0.52 | - | −179.81 | 1.383 | 1.458 | - | 1.445 | |
Dye 11 | 14.25 | −0.44 | - | −0.02 | 1.382 | 1.442 | - | 1.428 | |
Solvent | TPCTh | 29.55 | 43.02 | −0.89 | 0.10 | 1.405 | 1.478 | 1.458 | 1.421 |
TPCRh | 29.90 | 43.02 | 0.05 | −179.57 | 1.405 | 1.478 | 1.457 | 1.427 | |
Dye 10 | 11.10 | −1.27 | - | 179.92 | 1.373 | 1.457 | - | 1.441 | |
Dye 11 | 10.24 | −0.24 | - | −0.17 | 1.371 | 1.440 | - | 1.418 |
Condition | Dye | HOMO | LUMO | ΔH-L |
---|---|---|---|---|
Vacuum | TPCTh | −5.13 | −2.97 | 2.16 |
TPCRh | −5.12 | −2.95 | 2.17 | |
Dye 10 | −5.27 | −2.58 | 2.69 | |
Dye 11 | −5.29 | −2.70 | 2.59 | |
Solvent | TPCTh | −5.15 | −3.03 | 2.12 |
TPCRh | −5.14 | −3.03 | 2.11 | |
Dye 10 | −5.22 | −2.75 | 2.47 | |
Dye 11 | −5.21 | −2.80 | 2.41 |
Condition | Dye | State | E (eV) | λmax (nm) Cal/Exp * | CI main | f |
---|---|---|---|---|---|---|
Vacuum | TPCTh | S1 | 2.9525 | 419.93 | (0.66501)H-1→L | 1.5747 |
S2 | 3.3830 | 366.49 | (0.59391)H→L | 0.0705 | ||
S3 | 3.9898 | 310.76 | (0.37870)H→L+1 | 0.3016 | ||
S4 | 4.0729 | 304.41 | (0.46327)H-1→L+1 | 0.3540 | ||
S5 | 4.3876 | 282.58 | (0.45742)H-2→L | 0.0050 | ||
S6 | 4.4368 | 279.44 | (0.63913)H→L+4 | 0.0204 | ||
TPCRh | S1 | 2.8757 | 431.15 | (0.66421)H-1→L | 2.1580 | |
S2 | 3.2007 | 387.36 | (0.48232)H-3→L | 0.0001 | ||
S3 | 3.4209 | 362.43 | (0.55261)H→L | 0.1171 | ||
S4 | 3.8288 | 323.82 | (0.52941)H-1→L+1 | 0.0490 | ||
S5 | 4.0114 | 309.08 | (0.36677)H→L | 0.3288 | ||
S6 | 4.2232 | 293.58 | (0.50253)H-2→L | 0.0359 | ||
Solvent | TPCTh | S1 | 2.7636 | 448.63/440 * | (0.66980)H-1→L | 1.6597 |
S2 | 3.3011 | 375.59 | (0.57628)H→L | 0.1291 | ||
S3 | 3.8786 | 319.66 | (0.50145)H-1→L+1 | 0.3237 | ||
S4 | 3.9939 | 310.43 | (0.37873)H→L+1 | 0.4943 | ||
S5 | 4.3345 | 286.04 | (0.50054)H-8→L | 0.0129 | ||
S6 | 4.3596 | 284.39 | (0.41447)H-2→L | 0.0147 | ||
TPCRh | S1 | 2.6625 | 465.67/475 * | (0.66557)H-1→L | 2.2336 | |
S2 | 3.3059 | 375.04 | (0.49065)H-4→L | 0.0002 | ||
S3 | 3.3336 | 371.92 | (0.52607)H→L | 0.1848 | ||
S4 | 3.6453 | 340.12 | (0.54339)H-1→L+1 | 0.0672 | ||
S5 | 3.9605 | 313.05 | (0.39766)H→L | 0.3772 | ||
S6 | 4.1553 | 298.37 | (0.49634)H-2→L | 0.0676 |
Condition | Dye | State | E (eV) | λmax (nm) Cal/Exp * | CI main | f |
---|---|---|---|---|---|---|
Vacuum | Dye 10 | S1 | 3.0143 | 411.32 | (0.65466)H→L | 2.0236 |
S2 | 3.9795 | 311.56 | (0.56046)H→L+1 | 0.0038 | ||
S3 | 4.3609 | 284.31 | (0.52120)H-1→L | 0.0936 | ||
S4 | 4.4513 | 278.54 | (0.60998)H-4→L | 0.0199 | ||
S5 | 4.5024 | 275.37 | (0.40443)H-2→L | 0.0042 | ||
S6 | 4.9201 | 252.00 | (0.35361)H-1→L+1 | 0.0458 | ||
Dye 11 | S1 | 2.8376 | 436.94 | (0.67606)H→L | 2.0357 | |
S2 | 3.8590 | 321.29 | (0.51796)H→L+1 | 0.0237 | ||
S3 | 4.1581 | 298.18 | (0.49775)H-1→L | 0.0358 | ||
S4 | 4.4399 | 279.25 | (0.40334)H-2→L | 0.0035 | ||
S5 | 4.5545 | 272.23 | (0.53340)H-4→L | 0.0222 | ||
S6 | 4.7732 | 259.75 | (0.56177)H-6→L | 0.0000 | ||
Solvent | Dye 10 | S1 | 2.7879 | 444.73/452 * | (0.63828)H→L | 2.1753 |
S2 | 3.7448 | 331.08 | (0.56737)H→L+1 | 0.0029 | ||
S3 | 4.2091 | 294.56 | (0.50979)H-1→L | 01467 | ||
S4 | 4.3891 | 282.48 | (0.63416)H-4→L | 0.0259 | ||
S5 | 4.4622 | 277.85 | (0.40533)H-2→L | 0.0055 | ||
S6 | 4.7638 | 260.26 | (0.41197)H-1→L | 0.0505 | ||
Dye 11 | S1 | 2.5655 | 483.27/483 * | (0.66357)H→L | 2.2135 | |
S2 | 3.6205 | 342.45 | (0.51009)H→L+1 | 0.0365 | ||
S3 | 4.0221 | 308.26 | (0.47227)H-1→L | 0.0847 | ||
S4 | 4.3773 | 283.24 | (0.39392)H-2→L | 0.0043 | ||
S5 | 4.4294 | 279.91 | (0.53716)H-4→L | 0.0306 | ||
S6 | 4.6905 | 264.33 | (0.35719)H→L+1 | 0.1337 |
Dye | βxxx | βxyy | βxzz | βyyy | βyzz | βyxx | βzzz | βzxx | βzyy | βtot |
---|---|---|---|---|---|---|---|---|---|---|
TPCTh | 35,764 | −5537 | −349 | 309 | −2885 | 404 | −133 | −526 | 27 | 29,963 |
TPCRh | −34,535 | 10,465 | 627 | 48 | −4372 | 682 | −404 | 221 | 93 | 23,724 |
Dye 10 | 45,798 | −2403 | −614 | 27 | 133 | −23 | 14 | −71 | −17 | 42,782 |
Dye 11 | −33,101 | 2738 | −53 | −200 | 34 | 22 | 16 | 74 | 1 | 30,416 |
Condition | Dye | ΔGinject | ΔGreg | LHE | Stokes Shift (nm) | ||
---|---|---|---|---|---|---|---|
Vacuum | TPCTh | −1.82 | 5.13 | 2.18 | 0.33 | 0.973 | 57 |
TPCRh | −1.76 | 5.12 | 2.24 | 0.32 | 0.993 | 63 | |
Dye 10 | −1.74 | 5.27 | 2.26 | 0.47 | 0.994 | 51 | |
Dye 11 | −1.55 | 5.29 | 2.45 | 0.49 | 0.991 | 52 | |
Solvent | TPCTh | −1.61 | 5.15 | 2.39 | 0.35 | 0.978 | 80 |
TPCRh | −1.52 | 5.14 | 2.48 | 0.34 | 0.994 | 85 | |
Dye 10 | −1.57 | 5.22 | 2.43 | 0.42 | 0.993 | 91 | |
Dye 11 | −1.36 | 5.21 | 2.64 | 0.41 | 0.994 | 88 |
Dye | IP | EA | h | W (eV) | W+ | W− |
---|---|---|---|---|---|---|
TPCTh | 5.039 | 3.173 | 0.933 | 4.517 | 1.698 | 7.098 |
TPCRh | 5.035 | 3.169 | 0.933 | 4.510 | 1.695 | 7.086 |
Dye 10 | 5.014 | 2.992 | 1.011 | 3.961 | 1.768 | 6.047 |
Dye 11 | 4.996 | 3.058 | 0.969 | 4.186 | 1.716 | 6.479 |
Condition | Dye | τ (ns) |
---|---|---|
Vacuum | TPCTh | 2.23 |
TPCRh | 1.71 | |
Dye 10 | 1.50 | |
Dye 11 | 1.70 | |
Solvent | TPCTh | 2.56 |
TPCRh | 2.03 | |
Dye 10 | 1.81 | |
Dye 11 | 2.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Song, P.; Zhao, D.; Li, Y. Theoretical Investigation on Photophysical Properties of Triphenylamine and Coumarin Dyes. Materials 2020, 13, 4834. https://doi.org/10.3390/ma13214834
Li X, Song P, Zhao D, Li Y. Theoretical Investigation on Photophysical Properties of Triphenylamine and Coumarin Dyes. Materials. 2020; 13(21):4834. https://doi.org/10.3390/ma13214834
Chicago/Turabian StyleLi, Xinrui, Peng Song, Dongpeng Zhao, and Yuanzuo Li. 2020. "Theoretical Investigation on Photophysical Properties of Triphenylamine and Coumarin Dyes" Materials 13, no. 21: 4834. https://doi.org/10.3390/ma13214834
APA StyleLi, X., Song, P., Zhao, D., & Li, Y. (2020). Theoretical Investigation on Photophysical Properties of Triphenylamine and Coumarin Dyes. Materials, 13(21), 4834. https://doi.org/10.3390/ma13214834