Leaching of Carbon Reinforced Concrete—Part 2: Discussion of Evaluation Concepts and Modelling
Abstract
:1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Cumulative Release
2.3. Contact Time
2.4. Outlier Identification
2.5. Transfer Functions and Modelling
2.5.1. Approach of the Soil Quality Decree
2.5.2. Modelling with the Software COMLEAM
Input Data
Emission Functions
2.6. Spearman Correlation
2.7. Multiple Regression
- A linear relationship between input parameters and the outcome variable;
- No multicollinearity of input variables (The software excludes strongly correlating variables by regression of one predictor on another one. Moreover, collinear input parameters were partially excluded by knowledge based selection in advance.);
- and homoscedasticity of residuals, ratable by the software’s residual plots.
- Time of exposure in days (tex);
- contact time in hours (tcon);
- air temperature in °C (T);
- normal rain in mm (NR);
- wind driven rain in mm (WDR);
- total rain in mm (TR);
- rain intensity in mm/h (I);
- runoff in L/m2 (runoff);
- wind speed in m/s (v);
- wind direction in ° (α);
- air humidity in % (RH); and
- rain water pH/background concentration.
3. Results
3.1. Assessment of Cumulated Release of C3 Using the Concepts for Permanent Water Contact
3.2. Transfer and Modelling
3.2.1. COMLEAM
Laboratory Irrigation
Field Tests
3.2.2. Transfer Functions
- The Dutch approach, Equation (4), for intermittent moistened materials;
- the extrapolation after CEN/TS 16637-2 for permanently wet materials and applying the factor of 1/3 from the Dutch approach on this results;
- the COMLEAM calculations with an input dataset of the DSLT; and
- the COMLEAM calculations with an input logarithmic function derived from lab irrigation.
4. Discussion
4.1. Leaching Patterns in the Field Experiments
4.2. Influencing Factors on Outdoor Leaching
4.2.1. Spearman Correlation
4.2.2. Influence of Dry Phases
4.2.3. Multiple Regressions
pH
Calcium
Group 4, Vanadium
Zinc
5. Summary and Conclusions
- Investigations on the inorganic leaching behavior of carbon textile reinforced concrete confirmed the findings of Part 1 of this study: No environmentally harmful leaching was observed.
- Different approaches were tested to predict outdoor leaching behavior from laboratory data. Calculation models provided by Dutch and German standards mostly underestimated the total release. The tested modelling software COMLEAM does not suit the difficult case of heavy metal and trace elements leaching from cementitious materials, as it is designed for prediction on a macroscopic scale. A different modelling concept is needed for inorganics released from concrete.
- The investigated elements were divided into four groups, characterized by their respective leaching pattern formed through external factors. The influencing factors were determined using a Spearman correlation calculation, whereby most substances show only moderate correlations to single weather parameters.
- The influence of combined weather conditions was calculated. Considering six external factors is sufficient to describe and predict the leaching processes phenomenologically. The main leaching mechanisms (solution and diffusion) remain important but are significantly superimposed by outdoor influences with different impact on the particular substances.
- More research is necessary to develop a matching concept on transfer functions for irrigated building components. For an improved transferability to other cementitious materials, the underlying physicochemical processes should be identified, e.g., using geochemical modelling. The findings of this work concerning pattern groups and influencing parameters are providing a foundation for further assessment method development and definition of physicochemical relations.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Sub-Stance | R2 in % | R2 adjusted in % | R2 predicted in % |
---|---|---|---|
pH | 81.76 | 81.38 | 80.30 |
Ca | 85.76 | 85.71 | 85.42 |
V | 75.20 | 74.50 | 71.30 |
Zn | 71.23 | 69.90 | 67.09 |
Variable | Contribution in % | p Value |
---|---|---|
pH regression | 81.76 | 0.000 |
pHrain | 41.95 | 0.000 |
1/tex | 39.80 | 0.000 |
calcium regression | 85.76 | 0.000 |
runoff | 85.76 | 0.000 |
zinc regression | 71.23 | 0.000 |
tex−2 | 0.85 | 0.000 |
T/tcon | 14.43 | 0.002 |
RH ∗ tcon | 43.86 | 0.000 |
Znb ∗ runoff ∗ tcon | 4.23 | 0.000 |
runoff2 ∗ tcon | 4.25 | 0.000 |
RH ∗ tcon2 | 0.13 | 0.011 |
(Znb ∗ runoff ∗ tcon)/tex | 3.48 | 0.000 |
vanadium regression | 80.80 | 0.000 |
T | 2.12 | 0.000 |
tex ∗ T | 37.73 | 0.000 |
T/tex | 30.02 | 0.000 |
tex2/tcon | 1.30 | 0.000 |
RH/tex2 | 0.93 | 0.000 |
1/tex2tcon | 6.44 | 0.000 |
1/tex tcon2 | 2.27 | 0.000 |
References
- European Parliament. Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 Laying Down Harmonised Conditions for the Marketing of Construction Products and Repealing Council Directive 89/106/EEC (EUV 305/2011); European Parliament: Strasbourg, France, 2011. [Google Scholar]
- Ilvonen, O.; Dürkop, J.; Horn, W.; Englert, N.; Plehn, W.; Bolland, T.; Däumling, C.; Dorer, C.; Fischer, J.; Kirschbaum, B.; et al. Umwelt-und Gesundheitsverträgliche Bauprodukte: Ratgeber für Architekten, Bauherren, Planer. (Environmental-and Health Compatible Building Products); UBA: Dessau-Roßlau, Germany, 2015. [Google Scholar]
- Van der Sloot, H.; Van Zomeren, A.; Stenger, R.; Schneider, M.; Spanka, G.; Stoltenberg-Hansson, E.; Dath, P. Environmental CRIteria for CEMent—Based Products (ECRICEM) Phase I: Ordinary Portland Cements and Phase II: Blended Cements, Executive Summary (ECV-E-11-020); Netherlands Energy Research Foundation: Petten, The Netherlands, 2008. [Google Scholar]
- Van der Sloot, H. Characterization of the leaching behaviour of concrete mortars and of cement–stabilized wastes with different waste loading for long term environmental assessment. Waste Manag. 2002, 22, 181–186. [Google Scholar] [CrossRef]
- Schiopu, N.; Jayr, E.; Méhu, J.; Barna, L.; Moszkowicz, P. Horizontal environmental assessment of building products in relation to the construction products directive (CPD). Waste Manag. 2007, 27, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Scherer, C. Umwelteigenschaften Mineralischer Werkmörtel (Environmental Properties of Mineral Mortars); Fraunhofer Verlag: Stuttgart, Germany, 2013. [Google Scholar]
- Wachtendorf, V.; Kalbe, U.; Krüger, O.; Bandow, N. Influence of weathering on the leaching behaviour of zinc and PAH from synthetic sports surfaces. Polym. Test. 2017, 63, 621–631. [Google Scholar] [CrossRef]
- European Parliament. REGULATION (EC) No 850/2004 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 29 April 2004 on Persistent Organic Pollutants and Amending Directive 79/117/EEC: POP; European Parliament: Strasbourg, France, 2004. [Google Scholar]
- European Parliament. REGULATION (EC) No 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, AMENDING Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) no 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC: REACH; European Parliament: Strasbourg, France, 2006. [Google Scholar]
- Neubrand, H. Unerkannte Schadstoffrisiken Bei Vorhandenen und Neuen Baustoffen (Undetected Pollution Risks in Conventional and new Building Materials). In Aachener Bausachverständigentage 2016; Eckrich, W., Halstenberg, M., Herold, C., Liebert, G., Mohrmann, M., Moriske, H.-J., Neubrand, H., Oswald, M., Pohlenz, R., Seibel, M., et al., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2016; pp. 161–167. [Google Scholar]
- Koch, C.; Schmidt-Kötters, T.; Rupp, R.; Sures, B. Review of Hexabromocyclododecane (HBCD) with a focus on legislation and recent publications concerning toxicokinetics and—Dynamics. Environ. Pollut. 2015, 199, 26–34. [Google Scholar] [CrossRef] [PubMed]
- DIN German Institute for Standardization. Construction Products—Assessment of Release of Dangerous Substances—Determination of Emissions into Indoor Air (EN 16516:2017); Beuth Verlag GmbH: Berlin, Germany, 2017. [Google Scholar]
- Din, E.V. Construction Products—Assessment of Release of Dangerous Substances—Part 2: Horizontal Dynamic Surface Leaching Test; German Version (DIN CEN/TS 16637-2); Beuth Verlag GmbH: Berlin, Germany, 2014. [Google Scholar]
- CEN European Committee for Standardization. Paints and Varnishes—Laboratory Method for Determination of Release of Substances from Coatings in Intermittent Contact with Water (EN 16105:2011); CEN: Brussels, Belgium, 2011. [Google Scholar]
- DIBt. Grundsätze zur Bewertung der Auswirkungen von Bauprodukten auf Boden und Grundwasser (Principles for the Assessment of the Influence of Building Products on Soil and Groundwater Bodies); DIBt: Berlin, Germany, 2011. [Google Scholar]
- DIBt. Muster-Verwaltungsvorschrift Technische Baubestimmungen (MVV TB); Deutsches Institut für Bautechnik: Berlin, Germany, 2019. [Google Scholar]
- Bund-/Länderarbeitsgemeinschaft Wasser (LAWA), Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser: Aktualisierte und Überarbeitete Fassung 2016; LAWA: Stuttgart, Germany, 2017. [Google Scholar]
- Vollpracht, A.; Brameshuber, W. Investigations on the leaching behaviour of irrigated construction elements. Environ. Sci. Pollut. Res. Int. 2010, 17, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Weiler, L.; Vollpracht, A. Environmental compatibility of carbon reinforced concrete: Irrigated construction elements. KEM 2019, 809, 314–319. [Google Scholar] [CrossRef]
- Wicke, D.; Matzinger, A.; Rouault, P. Relevanz organischer Spurenstoffe im Regenwasserabfluss Berlins—OgRe (Relevance of Organic Trace Substances in the Rainwater Discharge of Berlin); Kompetenzzentrum Wasser Berlin GmbH: Berlin, Germany, 2017. [Google Scholar]
- Gasperi, J.; Sebastian, C.; Ruban, V.; Delamain, M.; Percot, S.; Wiest, L.; Mirande, C.; Caupos, E.; Demare, D.; Kessoo, M.D.K.; et al. Micropollutants in urban stormwater: Occurrence, concentrations, and atmospheric contributions for a wide range of contaminants in three French catchments. Environ. Sci. Pollut. Res. Int. 2014, 21, 5267–5281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clara, M.; Ertl, T.; Giselbrecht, G.; Gruber, G.; Hofer, T.F.; Humer, F.; Kretschmer, F.; Kolla, L.; Scheffknecht, C.; Weiß, S.; et al. SCHTURM—Spurenstoffemissionen aus Siedlungsgebieten und von Verkehrsflächen: Studie im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. (Trace Substances Emissions from Residential and Traffic Areas); BMLFUW: Wien, Austria, 2014. [Google Scholar]
- Dijkstra, J.J.; Van der Sloot, H.A.; Spanka, G.; Thilen, G. How to Judge Release of Dangerous Substances from Construction Products to Soil and Groundwater: CPD Topic 1. Soil and Groundwater Impact; ECN-C-05-045; ECN: Petten, The Netherlands, 2005. [Google Scholar]
- Hecht, M. Quellstärke ausgewählter Betone in Kontakt mit Sickerwasser (Source Strength of Selected Concretes in Contact with Leachates). Beton Stahlbetonbau 2005, 100, 85–88. [Google Scholar] [CrossRef]
- Weiler, L.; Vollpracht, A. Leaching of Carbon Reinforced Concrete—Part 1: Experimental Investigations. Materials 2020, 13, 4405. [Google Scholar] [CrossRef] [PubMed]
- Eikelboom, R.T.; Ruwiel, E.; Goumans, J. The building materials decree: An example of a Dutch regulation based in the potential impact of materials on the environment. Waste Manag. 2001, 21, 295–302. [Google Scholar] [CrossRef]
- Verschoor, A.J.; Lijzen, J.; van den Broek, H.H.; Cleven, R.; Comans, R.; Dijkstra, J.J.; Vermij, P. Kritische Emissiewaarden voor Bouwstoffen: Milieuhygiënische Onderbouwing en Consequenties voor Bouwmaterialen; RIZA-Rapport nr. 2006.029; RIVM: Bilthoven, The Netherlands, 2006. [Google Scholar]
- Hendriks, I.C.F.; Raad, J.S. Report—Principles and background of the building materials decree in the Netherlands. Mat. Struct. 1997, 30, 3–10. [Google Scholar] [CrossRef]
- Schoknecht, U.; Gruycheva, J.; Mathies, H.; Bergmann, H.; Burkhardt, M. Leaching of biocides used in façade coatings under laboratory test conditions. Environ. Sci. Technol. 2009, 43, 9321–9328. [Google Scholar] [CrossRef] [PubMed]
- Bandow, N.; Aitken, M.D.; Geburtig, A.; Kalbe, U.; Piechotta, C.; Schoknecht, U.; Simon, F.-G.; Stephan, I. Using environmental simulations to test the release of hazardous substances from polymer-based products: Are realism and pragmatism mutually exclusive objectives? Materials 2020, 13, 2709. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, M.; Engelke, D.; Gehrig, S.; Hochstrasser, F.; Rohr, M.; Tietje, O. Introduction and Application of the Software COMLEAM:—Manual, Version 1.0; HSR University of Applied Sciences: Rapperswil, Switzerland, 2018. [Google Scholar]
- Tietje, O.; Burkhardt, M.; Rohr, M.; Borho, N.; Schoknecht, U. Emissions—und Übertragungsfunktionen für die Modellierung der Auslaugung von Bauprodukten. (Emission and Transfer Functions for the Modelling of the Leaching of Building Materials); UBA: Dessau-Roßlau, Germany, 2018. [Google Scholar]
- Schneider, C.; Ketzler, G. Climate Data Logger Aachen-Hörn—Data of Annual Report 2018. Datensatz (Dataset); RWTH Aachen University: Aachen, Germany, 2018; ISSN 1861-3993. [Google Scholar]
- Schneider, C.; Ketzler, G. Climate Data Logger Aachen-Hörn—Data of Annual Report 2019. Datensatz (Dataset); RWTH Aachen University: Aachen, Germany, 2019; ISSN 1861-3993. [Google Scholar]
- Hedderich, J.; Sachs, L. 14. Überarb. und erg. Aufl. Angewandte Statistik: Methodensammlung mit R; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Burkhardt, M.; Klingler, M.; Savi, D.; Rohr, M.; Tietje, O.; Junghans, M. Entwicklung Einer Emissionsbasierten Bauproduktebewertung—Anwendung des Konzepts für Dachbahnen und Fassadenputze; BAFU: Basel, Switzerland, 2020. [Google Scholar]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1987, 100, 441–471. [Google Scholar] [CrossRef] [PubMed]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Shevlyakov, G.L.; Oja, H. Robust Correlation: Theory and Applications; Wiley Series in Probability and Statistics; Wiley: Chichester, UK, 2016. [Google Scholar]
- Croux, C.; Dehon, C. Influence functions of the Spearman and Kendall correlation measures. Stat. Methods Appl. 2010, 19, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer. Regeling Bodemkwaliteit (nr. DJZ2007124397) per 1 January 2008. In Staatscourant; Ministerie van Binnenlandse Zaken en Koninkrijksrelaties: Den Haag, The Netherlands, 2007; p. 67. [Google Scholar]
- Vollpracht, A.; Brameshuber, W. Binding and leaching of trace elements in Portland cement pastes. Cem. Concr. Res. 2016, 79, 76–92. [Google Scholar] [CrossRef]
- Mulugeta, M.; Engelsen, C.J.; Wibetoe, G.; Lund, W. Charge-based fractionation of oxyanion-forming metals and metalloids leached from recycled concrete aggregates of different degrees of carbonation: A comparison of laboratory and field leaching tests. Waste Manag. 2011, 31, 253–258. [Google Scholar] [CrossRef] [PubMed]
Scenario | Object ID | Building ID | Facade | Mineral 1 (Concrete) ID | ||||
---|---|---|---|---|---|---|---|---|
Width [m] | Height [m] | Area [m2] | Exposition [°] | Ground Angle [°] | ||||
Laboratory | 1 | 1 | 0.30 | 0.40 | 0.12 | 270 | 45 | 106 |
Outdoor | 1 | 1 | 0.60 | 1.00 | 0.60 | 45 | ||
Outdoor-split | 1 | 1 | 0.60 | 0.71 | 0.42 | 90 | ||
2 | 1 | 0.71 | 0.60 | 0.42 | 0 |
Element | Logarithmic Function Parameters | Diffusion Parameter | |
---|---|---|---|
a | b in m2/L | ||
Ba | 0.271 | 0.0194 | 0.0299 |
V | 0.261 | 0.0109 | 0.0208 |
Substance | DSLT [mg/m2] | Laboratory [mg/m2] | Outdoor [mg/m2] | Threshold D [mg/m2] | Threshold NL [mg/m2] |
---|---|---|---|---|---|
SO42− | 1170 | 393 | 233 | 264,495 | 165,000 |
Sb | 1.34 | 0.049 | - | 5.5 | 8.7 |
Ba | 17.5 | 0.869 | −0.27 | 375 | 1500 |
Cr | 1.16 | 0.371 | 0.53 | 7.7 | 120 |
Cu | 0.209 | 0.271 | −0.10 | 15.4 | 98 |
Mo | 0.324 | 0.083 | 0.10 | 38.6 | 144 |
Ni | 0.204 | 0.816 | 3.64 | 15.4 | 81 |
V | 2.18 | 0.750 | 1.43 | 4.4 1 | 320 |
Zn | 1.23 | 0.829 | −3.61 | 63.9 | 800 |
Substance | Substance Release After 1a in mg/m2 | Deviation from the Measured Value in % | |
---|---|---|---|
Calculated After [28] | Outdoor | ||
Na | 650 | 2578 | −297 |
K | 2086 | 6393 | −207 |
Ca | 14328 | 2157 | 85 |
Cl− | 30.4 | −163 | 638 |
SO42− | 669 | 180 | 73 |
As | 0.0395 | 0.108 | −174 |
Ba | 9.03 | −0.286 | 103 |
Pb | 0.482 | −0.240 | 150 |
Cr | 0.631 | 0.288 | 54 |
Cu | 0.176 | −0.188 | 207 |
Mo | 0.191 | 0.0573 | 70 |
Ni | 0.159 | 0.511 | −221 |
V | 1.27 | 1.11 | 12 |
Zn | 0.651 | −3.99 | 712 |
Sub-Stance | Blank (Glass Plate) | Emission from C3 | ||
---|---|---|---|---|
Development of Concentrations | Cumulated Amount in mg/m2 after One Year | Cumulated Release in mg/m2 after One Year | Schematic Release Graph | |
Ca | Independent from season and weather conditions | 220 | 2157 | 1 |
Cl− | Unstable, consistently in the range of eluate concentrations | 870 | −163 | 2 |
Ba | Independent from season and weather conditions | 1.11 | −0.286 | |
Pb | Higher concentrations after dry phases, probably due to particle deposit | 0.464 | −0.240 | |
Zn | 6.09 | −3.99 | ||
Cu | 0.910 | −0.188 | ||
SO42− | Unstable | 609 | 180 | 3 *2 |
Sb | Independent from season and weather conditions, but consistently in the range of eluate concentrations | 0.081 | 0.000 | |
Mo *1 | 0.227 | 0.213 | ||
B | Independent from season and weather conditions | 1.87 | 3.21 | 4a |
As | 0.071 | 0.108 | ||
Cr | Stable, slight increase from march to august | 0.130 | 0.288 | |
V | 0.143 | 1.11 | ||
Na | Independent from season and weather conditions | 597 | 2578 | 4b |
K | 71.6 | 6393 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiler, L.; Vollpracht, A.; Matschei, T. Leaching of Carbon Reinforced Concrete—Part 2: Discussion of Evaluation Concepts and Modelling. Materials 2020, 13, 4937. https://doi.org/10.3390/ma13214937
Weiler L, Vollpracht A, Matschei T. Leaching of Carbon Reinforced Concrete—Part 2: Discussion of Evaluation Concepts and Modelling. Materials. 2020; 13(21):4937. https://doi.org/10.3390/ma13214937
Chicago/Turabian StyleWeiler, Lia, Anya Vollpracht, and Thomas Matschei. 2020. "Leaching of Carbon Reinforced Concrete—Part 2: Discussion of Evaluation Concepts and Modelling" Materials 13, no. 21: 4937. https://doi.org/10.3390/ma13214937
APA StyleWeiler, L., Vollpracht, A., & Matschei, T. (2020). Leaching of Carbon Reinforced Concrete—Part 2: Discussion of Evaluation Concepts and Modelling. Materials, 13(21), 4937. https://doi.org/10.3390/ma13214937