Biocompatible Nanocomposite Enhanced Osteogenic and Cementogenic Differentiation of Periodontal Ligament Stem Cells In Vitro for Periodontal Regeneration
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Composite Disks
- (1)
- 30% BT + 70% glass particles (0% Nano-CaF2 control);
- (2)
- 30% BT + 60% glass particles + 10% Nano-CaF2 (10% Nano-CaF2);
- (3)
- 30% BT + 55% glass particles + 15% Nano-CaF2 (15% Nano-CaF2);
- (4)
- 30% BT + 50% glass particles + 20% Nano-CaF2 (20% Nano-CaF2);
- (5)
- Commercial Heliomolar composite (Heliomolar control)
2.2. Mechanical Testing
2.3. Measurement of Ca and F ion Release from Nano-CaF2 Composites
2.4. hPDLSC Culture
2.5. Cell Viability Assay
2.6. Scanning Electron Microscopy
2.7. Live/Dead Staining
2.8. Quantitative Real-Time PCR
2.9. ALP Activity
2.10. Alizarin Red Staining (ARS) of Bone Minerals Secreted by hPDLSCs
2.11. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Carasol, M.; Llodra, J.C.; Fernández-Meseguer, A.; Bravo, M.; García-Margallo, M.T.; Calvo-Bonacho, E.; Sanz, M.; Herrera, D. Periodontal conditions among employed adults in Spain. J. Clin. Periodontol. 2016, 43, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Beatriz, H.-M.; Edelmiro, S.O.; Alberto, M.-G.; Edgar, L.-M.; Víctor, M.-N.E. Mesenchymal stem cells of dental origin for inducing tissue regeneration in periodontitis: A mini-review. Int. J. Mol. Sci. 2018, 19, 944. [Google Scholar] [CrossRef] [Green Version]
- Han, M.A. Oral health status and behavior among cancer survivors in Korea using nationwide survey. Int. J. Env. Res. Public Health 2018, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Meurman, J.H.; Sanz, M.; Janket, S.J. Oral health, atherosclerosis, and cardiovascular disease. Crit. Rev. Oral. Biol. Med. 2004, 15, 403–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, D.; Deshpande, N.C.; Dave, D. Effect of systemic doxycycline on scaling and root planing in chronic periodontitis. J. Integr. Health Sci. 2019, 7, 8–12. [Google Scholar]
- Akram, Z.; Raffat, M.A.; Shafqat, S.S.; Mirza, S.; Ikram, S. Clinical efficacy of photodynamic therapy as an adjunct to scaling and root planing in the treatment of chronic periodontitis among cigarette smokers: A systematic review and meta-analysis. Photodiagn. Photodyn. 2019, 26, 334–341. [Google Scholar] [CrossRef]
- Kim, J.K.; Baker, L.A.; Seirawan, H.; Crimmins, E.M. Prevalence of oral health problems in us adults, nhanes 1999–2004: Exploring differences by age, education, and race/ethnicity. Spec. Care Dentist. 2012, 32, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eke, P.I.; Dye, B.A.; Wei, L.; Slade, G.D.; Thornton-Evans, G.O.; Borgnakke, W.S.; Taylor, G.W.; Page, R.C.; Beck, J.D.; Genco, R.J. Update on prevalence of periodontitis in adults in the United States: NHANES 2009–2012. J. Periodontol. 2015, 86, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Hoppenbrouwers, P.M.M.; Driessens, F.C.M.; Borggreven, J.M.P.M. The mineral solubility of human tooth roots. Arch. Oral. Biol. 1987, 32, 319–322. [Google Scholar] [CrossRef]
- Fadel, H.; Al Hamdan, K.; Rhbeini, Y.; Heijl, L.; Birkhed, D. Root caries and risk profiles using the cariogram in different periodontal disease severity groups. Acta Odontol. Scand. 2011, 69, 118–124. [Google Scholar] [CrossRef]
- Hellyer, P.; Beighton, D.; Heath, M.; Lynch, E. Root caries in older people attending a general dental practice in East Sussex. Br. Dent. J. 1990, 169, 201–206. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Lussi, A.; Seemann, R.; Neuhaus, K.W. Prevention of crown and root caries in adults. Periodontology 2015, 55, 231–249. [Google Scholar] [CrossRef]
- Chi, M.H.; Qi, M.; Lan, A.; Wang, P.; Weir, M.D.; Melo, M.A.; Sun, X.L.; Dong, B.; Li, C.Y.; Wu, J.L.; et al. Novel bioactive and therapeutic dental polymeric materials to inhibit periodontal pathogens and biofilms. Int. J. Mol. Sci. 2019, 20, 278. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Xia, Y.; Ma, T.; Weir, M.D.; Ren, K.; Reynolds, M.A.; Shu, Y.; Cheng, L.; Schneider, A.; Xu, H.H. Novel metformin-containing resin promotes odontogenic differentiation and mineral synthesis of dental pulp stem cells. Drug Deliv. Transl. Res. 2019, 9, 85–96. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, H.; Liang, K.; Tay, F.; Weir, M.D.; Melo, M.A.S.; Wang, L.; Wu, Y.; Oates, T.W.; Ding, Y. Novel multifunctional nanocomposite for root caries restorations to inhibit periodontitis-related pathogens. J. Dent. 2018, 81, 17–26. [Google Scholar] [CrossRef]
- Walls, A.W.G.; Meurman, J.H. Approaches to caries prevention and therapy in the elderly. Adv. Dent. Res. 2012, 24, 36–40. [Google Scholar] [CrossRef]
- Habibovic, P.; Barralet, J.E. Bioinorganics and biomaterials: Bone repair. Acta Biomater. 2011, 7, 3013–3026. [Google Scholar] [CrossRef]
- León, B.; Jansen, J. Thin calcium phosphate coatings for medical implant. In Characterization of Thin Calcium Phosphate Coating; Springer: New York, NY, USA, 2009; pp. 25–66. [Google Scholar] [CrossRef]
- Anitua, E.; Piñas, L.; Murias, A.; Prado, R.; Tejero, R. Effects of calcium ions on titanium surfaces for bone regeneration. Colloid Surf. B 2015, 130, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chow, L.C. Preparation and properties of nano-sized calcium fluoride for dental applications. Dent. Mater. 2008, 24, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Moreau, J.L.; Sun, L.; Chow, L.C. Novel CaF2 nanocomposite with high strength and fluoride ion release. J. Dent. Res. 2010, 89, 739–745. [Google Scholar] [CrossRef]
- Mitwalli, H.; Balhaddad, A.A.; Alsahafi, R.; Oates, T.W.; Melo, M.A.S.; Xu, H.H.K.; Weir, M.D. Novel CaF2 nanocomposites with antibacterial function and fluoride and calcium ion release to inhibit oral biofilm and protect teeth. J. Funct. Biomater. 2020, 11, 56. [Google Scholar] [CrossRef]
- Chow, L.C.; Sun, L.; Hockey, B. Properties of nanostructured hydroxyapatite prepared by a spray drying technique. J. Res. Natl. Inst. Stan. 2004, 109, 543–551. [Google Scholar] [CrossRef]
- Xu, H.H.; Moreau, J.L.; Sun, L.; Chow, L.C. Strength and fluoride release characteristics of a calcium fluoride-based dental nanocomposite. Biomaterials 2008, 29, 4261–4267. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Zhang, K.; Melo, M.; Weir, M.; Xu, D.; Bai, Y.; Xu, H. Effects of long-term water-aging on novel anti-biofilm and protein-repellent dental composite. Int. J. Mol. Sci. 2017, 18, 186. [Google Scholar] [CrossRef]
- Sun, J.; Forster, A.M.; Johnson, P.M.; Eidelman, N.; Quinn, G.; Schumacher, G.; Zhang, X.; Wu, W. Improving performance of dental resins by adding titanium dioxide nanoparticles. Dent. Mater. 2011, 27, 972–982. [Google Scholar] [CrossRef]
- Antonucci, J.M.; Zeiger, D.N.; Tang, K.; Lin-Gibson, S.; Fowler, B.O.; Lin, N.J. Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent. Mater. 2012, 28, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Weir, M.D.; Xu, H.H.; Antonucci, J.M.; Kraigsley, A.M.; Lin, N.J.; Lin-Gibson, S.; Zhou, X. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent. Mater. 2012, 28, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xie, X.; Imazato, S.; Weir, M.D.; Reynolds, M.A.; Xu, H.H. A protein-repellent and antibacterial nanocomposite for class-v restorations to inhibit periodontitis-related pathogens. Mater. Sci. Eng. C 2016, 67, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Ma, T.; Guo, D.; Hu, K.; Shu, Y.; Xu, H.H.; Schneider, A. Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells. J. Tissue Eng. Regen. Med. 2018, 12, 437–446. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Cheng, L.; Jiang, Y.; Melo, M.A.S.; Weir, M.D.; Oates, T.W.; Zhou, X.; Xu, H.H.K. Novel dental composite with capability to suppress cariogenic species and promote non-cariogenic species in oral biofilms. Mater. Sci. Eng. C 2018, 94, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Junior, S.A.R.; Ferracane, J.L.; Bona, A.D. Flexural strength and weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dent. Mater. 2008, 24, 426–431. [Google Scholar] [CrossRef]
- Bruneel, E.; Persyn, F.; Hoste, S. Mechanical and superconducting properties of bipbsrcacuo-pe and bipbsrcacuo-mgo composites. Supercond. Sci. Technol. 1998, 11, 88. [Google Scholar] [CrossRef]
- Erdemir, U.Y.E.; Eren, M.M.; Ozel, S. Surface hardness evaluation of different composite resin materials: Influence of sports and energy drinks immersion after a short-term period. J. Appl. Oral. Sci. 2013, 21, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.H.K.; Weir, M.D.; Sun, L. Nanocomposites with Ca and PO4 release: Effects of reinforcement, dicalcium phosphate particle size and silanization. Dent. Mater. 2007, 23, 1482–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrtic, D.; Antonucci, J.M.; Eanes, E.D. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent. Mater. 1996, 12, 295–301. [Google Scholar] [CrossRef]
- Dickens, S.H.; Flaim, G.M.; Takagi, S. Mechanical properties and biochemical activity of remineralizing resin-based Ca–PO4 cements. Dent. Mater. 2003, 19, 558–566. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Ruan, J.; Weir, M.D.; Ma, T.; Ren, K.; Schneider, A.; Oates, T.W.; Li, A.; Zhao, L.; et al. Stem cells in the periodontal ligament differentiated into osteogenic, fibrogenic and cementogenic lineages for the regeneration of the periodontal complex. J. Dent. 2020, 92, 103259–103271. [Google Scholar] [CrossRef]
- Seo, B.-M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.G.; Wang, C.Y.; Shi, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364, 149–155. [Google Scholar] [CrossRef]
- Xu, H.H.; Zhao, L.; Detamore, M.S.; Takagi, S.; Chow, L.C. Umbilical cord stem cell seeding on fast-resorbable calcium phosphate bone cement. Tissue Eng. Part A 2010, 16, 2743–2753. [Google Scholar] [CrossRef] [Green Version]
- Eid, A.A.; Hussein, K.A.; Niu, L.-N.; Li, G.-H.; Watanabe, I.; Al-Shabrawey, M.; Pashley, D.H.; Tay, F.R. Effects of tricalcium silicate cements on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Acta Biomater. 2014, 10, 3327–3334. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.G.; Wimpenny, I.; Dey, R.E.; Zhong, X.; Youle, P.J.; Downes, S.; Watts, D.C.; Budd, P.M.; Hoyland, J.A.; Gough, J.E. The unique calcium chelation property of poly (vinyl phosphonic acid-co-acrylic acid) and effects on osteogenesis in vitro. J. Biomed. Mater. Res. A 2018, 106, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Ayobian-Markazi, N.; Fourootan, T.; Kharazifar, M. Comparison of cell viability and morphology of a human osteoblast-like cell line (saos-2) seeded on various bone substitute materials: An in vitro study. J. Dent. Res. 2012, 9, 86–92. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, H.; Weir, M.D.; Bao, C.; Xu, H.H. Umbilical cord stem cells released from alginate–fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater. 2012, 8, 2297–2306. [Google Scholar] [CrossRef] [Green Version]
- Marie, P.J. The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis. Bone 2010, 46, 571–576. [Google Scholar] [CrossRef]
- Nakamura, S.; Matsumoto, T.; Sasaki, J.I.; Egusa, H.; Lee, K.Y.; Nakano, T.; Sohmura, T.; Nakahira, A. Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng. Part A 2010, 16, 2467–2473. [Google Scholar] [CrossRef]
- Liu, J.; Rawlinson, S.C.F.; Hill, R.G.; Fortune, F. Fluoride incorporation in high phosphate containing bioactive glasses and in vitro osteogenic, angiogenic and antibacterial effects. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2016, 32, e221–e237. [Google Scholar] [CrossRef] [PubMed]
- Chachra, D.; Vieira, A.P.G.F.; Grynpas, M.D. Fluoride and mineralized tissues. Criti. Rev. Biomed. Eng. 2008, 36, 183–223. [Google Scholar] [CrossRef]
- Pilliar, R.; Filiaggi, M.; Wells, J.; Grynpas, M.; Kandel, R. Porous calcium polyphosphate scaffolds for bone substitute applications—In vitro characterization. Biomaterials 2001, 22, 963–972. [Google Scholar] [CrossRef]
- Skrtic, D.; Antonucci, J.M.; Eanes, E.D.; Eichmiller, F.C.; Schumacher, G.E. Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2000, 53, 381–391. [Google Scholar] [CrossRef]
- Xu, H.; Sun, L.; Weir, M.; Antonucci, J.M.; Takagi, S.; Chow, L.C.; Peltz, M. Nano dcpa-whisker composites with high strength and Ca and PO4 release. J. Dent. Res. 2006, 85, 722–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Weir, M.; Sun, L.; Takagi, S.; Chow, L. Effects of calcium phosphate nanoparticles on Ca-PO4 composite. J. Dent. Res. 2007, 86, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.H.K.; Weir, M.D.; Sun, L.; Ngai, S.; Takagi, S.; Chow, L.C. Effect of filler level and particle size on dental caries-inhibiting Ca–PO4 composite. J. Mater. Sci. Mater. Med. 2009, 20, 1771–1779. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Liu, M.; Ma, Y.; Cao, L.; Xu, H.H.; Zhang, K.; Bai, Y. Effects of fluoride and calcium phosphate materials on remineralization of mild and severe white spot lesions. Biomed. Res. Int. 2019, 2019, 1271523. [Google Scholar] [CrossRef]
- An, S.; Gao, Y.; Ling, J.; Wei, X.; Xiao, Y. Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: Implications for pulp capping materials. J. Mater. Mater. Med. 2012, 23, 789–795. [Google Scholar] [CrossRef]
- Barradas, A.M.; Fernandes, H.A.; Groen, N.; Chai, Y.C.; Schrooten, J.; van de Peppel, J.; van Leeuwen, J.P.; van Blitterswijk, C.A.; de Boer, J. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 2012, 33, 3205–3215. [Google Scholar] [CrossRef]
- Hua Song, G.; Wang, R.L.; Chen, Z.Y.; Zhang, B.; Wang, H.L.; Liu, M.L.; Gao, J.P.; Yan, X.Y. Toxic effects of sodium fluoride on cell proliferation and apoptosis of leydig cells from young mice. J. Physiol. Biochem. 2014, 70, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Caverzasio, P.P.B. Catecholamines stimulate the proliferation and alkaline phosphatase activity of mc3t3-e1 osteoblast-like cells. Bone 1998, 23, 197–203. [Google Scholar]
- Burgener, D.; Bonjour, J.P.; Caverzasio, J. Fluoride increases tyrosine kinase activity in osteoblast-like cells: Regulatory role for the stimulation of cell proliferation and pi transport across the plasma membrane. J. Bone Miner. Res. 2010, 10, 164–171. [Google Scholar] [CrossRef]
- Gofa, A.; Davidson, R.M. Naf potentiates a K(+)-selective ion channel in g292 osteoblastic cells. J. Membr. Biol. 1996, 149, 211–219. [Google Scholar] [CrossRef]
- Garrill, A.; Lew, R.R.; Heath, I.B. Stretch-activated Ca2+ and Ca2+ -activated k channels in the hyphal tip plasma membrane of the oomycete saprolegnia ferax. J. Cell Sci. 1992, 101, 721–730. [Google Scholar]
- Weir, M.D.; Chow, L.C.; Xu, H.H.K. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J. Dent. Res. 2012, 91, 979–984. [Google Scholar] [CrossRef] [Green Version]
Gene | Primers(5′-3′) |
---|---|
GAPDH | (F) GCACCGTCAAGGCTGAGAAC (R) ATGGTGGTGAAGACGCCAGT |
ALP | (F) TCAGAAGCTAACACCAACG (R) TTGTACGTCTTGGAGAGGGC |
RUNX2 | (F) TCTGGCCTTCCACTCTCAGT (R) GACTGGCGGGGTGTAAGTAA |
COL1 | (F) CTGACCTTCCTGCGCCTGATGTCC (R) GTCTGGGGCACCAACGTCCAAGGG |
OPN | (F) TCACCTGTGCCATACCAGTTAA (R) TGAGATGGGTCAGGGTTTAGC |
CAP | (F) CCTGGCTCACCTTCTACGAC (R) CCTCAAGCAAGGCAAATGTC |
CEMP1 | (F) GGGCACATCAAGCACTGACAG (R) CCCTTAGGAAGTGGCTGTCCAG |
BSP | (F) GAACCACTTCCCCACCTTTT (R) TCTGACCATCATAGCCATCG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Dai, Q.; Weir, M.D.; Schneider, A.; Zhang, C.; Hack, G.D.; Oates, T.W.; Zhang, K.; Li, A.; Xu, H.H.K. Biocompatible Nanocomposite Enhanced Osteogenic and Cementogenic Differentiation of Periodontal Ligament Stem Cells In Vitro for Periodontal Regeneration. Materials 2020, 13, 4951. https://doi.org/10.3390/ma13214951
Liu J, Dai Q, Weir MD, Schneider A, Zhang C, Hack GD, Oates TW, Zhang K, Li A, Xu HHK. Biocompatible Nanocomposite Enhanced Osteogenic and Cementogenic Differentiation of Periodontal Ligament Stem Cells In Vitro for Periodontal Regeneration. Materials. 2020; 13(21):4951. https://doi.org/10.3390/ma13214951
Chicago/Turabian StyleLiu, Jin, Quan Dai, Michael D. Weir, Abraham Schneider, Charles Zhang, Gary D. Hack, Thomas W. Oates, Ke Zhang, Ang Li, and Hockin H. K. Xu. 2020. "Biocompatible Nanocomposite Enhanced Osteogenic and Cementogenic Differentiation of Periodontal Ligament Stem Cells In Vitro for Periodontal Regeneration" Materials 13, no. 21: 4951. https://doi.org/10.3390/ma13214951
APA StyleLiu, J., Dai, Q., Weir, M. D., Schneider, A., Zhang, C., Hack, G. D., Oates, T. W., Zhang, K., Li, A., & Xu, H. H. K. (2020). Biocompatible Nanocomposite Enhanced Osteogenic and Cementogenic Differentiation of Periodontal Ligament Stem Cells In Vitro for Periodontal Regeneration. Materials, 13(21), 4951. https://doi.org/10.3390/ma13214951