The Influence of Solvent on the Crystal Packing of Ethacridinium Phthalate Solvates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Compounds 1–4
- (1)
- 6,9-Diamino-2-ethoxyacridinium phthalate methanol solvate (6,9-diamino-2-ethoxyacridinium phthalate–methanol (1/1)) (1)
- (2)
- 6,9-Diamino-2-ethoxyacridinium phthalate ethanol solvate (6,9-diamino-2-ethoxyacridinium phthalate–ethanol (1/1)) (2).
- (3)
- 6,9-Diamino-2-ethoxyacridinium phthalate isobutanol solvate (6,9-diamino-2-ethoxyacridinium phthalate–isobutanol (1/1)) (3)
- (4)
- 6,9-Diamino-2-ethoxyacridinium phthalate tert-butanol solvate monohydrate (6,9-diamino-2-ethoxyacridinium phthalate–tert-butanol–water (1/1/1)) (4)
2.2. X-ray Measurements and Refinements
3. Results
3.1. Crystal Structure of Ethacridinium Phthalate Methanol Solvate (1)
3.2. Crystal Structure of Ethacridinium Phthalate Ethanol Solvate (2)
3.3. Crystal Structure of Ethacridinium Phthalate Isobutanol Solvate (3)
3.4. Crystal Structure of Ethacridinium Phthalate Tert-Butanol Solvate Monohydrate (4)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, W.-Y.; Xu, J.-G.; Guo, X.-Q.; Zhu, Q.-Z.; Zhao, Y.-B. Study on the interaction between rivanol and DNA and its application to DNA assay. Spectrochim. Acta A 1997, 53, 781–787. [Google Scholar] [CrossRef]
- Oie, S.; Kamiya, A. Bacterial contamination of commercially available ethacridine lactate (acrinol) products. J. Hosp. Infect. 1996, 34, 51–58. [Google Scholar] [CrossRef]
- Koelzer, S.C.; Held, H.; Toennes, S.W.; Verhoff, M.A.; Wunder, C. Self-induced illegal abortion with Rivanol®: A medicolegal–toxicological case report. Forensic Sci. Int. 2016, 268, e18–e22. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.S.; Lee, J.J.; Li, Y.S.; Cheng, S.P. Ethacridine induces apoptosis and differentiation in thyroid cancer cells in vitro. Anticancer Res. 2019, 39, 4095–4100. [Google Scholar] [CrossRef]
- Chen, C.; Lin, F.; Wang, X.; Jiang, Y.; Wu, S. Mifepristone combined with ethacridine lactate for the second-trimester pregnancy termination in women with placenta previa and/or prior cesarean deliveries. Arch. Gynecol. Obstet. 2017, 295, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.P.; Fang, A.H.; Chen, Q.F.; Huang, Y.M.; Chen, O.J.; Cheng, L.N. Termination of second-trimester pregnancy by mifepristone combined with misoprostol versus intra-amniotic injection of ethacridine lactate (Rivanol®): A systematic review of Chinese trials. Contraception 2011, 84, 214–223. [Google Scholar] [CrossRef]
- Dadhwal, V.; Garimella, S.; Khoiwal, K.; Sharma, K.A.; Perumal, V.; Deka, D. Mifepristone followed by misoprostol or ethacridine lactate and oxytocin for second trimester abortion: A randomized trial. Eurasian J. Med. 2019, 51, 262–266. [Google Scholar] [CrossRef]
- Neidle, S.; Aggarwal, A. Nucleic acid binding drugs. the structure of 3,9-Diamino-7-ethoxyacridine (Rivanol) as the lactate monohydrate salt. Acta Crystallogr. 1982, B38, 2420–2424. [Google Scholar] [CrossRef] [Green Version]
- Fujii, K.; Uekusa, H.; Itoda, N.; Hasegawa, G.; Yonemochi, E.; Terada, K.; Pan, Z.; Harris, K.D.M. Physicochemical understanding of polymorphism and solid-state dehydration/rehydration processes for the pharmaceutical material acrinol, by Ab initio powder X-ray diffraction analysis and other techniques. J. Phys. Chem. C 2010, 114, 580–586. [Google Scholar] [CrossRef]
- Mirocki, A.; Sikorski, A. Influence of halogen substituent on the self-assembly and crystal packing of multicomponent crystals formed from ethacridine and meta-halobenzoic acids. Crystals 2020, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, K.; Trzybiński, D.; Sikorski, A. Influence of the halogen substituent on the formation of halogen and hydrogen bonding in co-crystal formed from acridine and benzoic acids. CrystEngComm 2015, 17, 7199–7212. [Google Scholar] [CrossRef]
- Sikorski, A.; Trzybiński, D. Synthesis and structural characterization of a cocrystal salt containing acriflavine and 3,5-dinitrobenzoic acid. Tetrahedron Lett. 2014, 55, 2253–2255. [Google Scholar] [CrossRef]
- Sikorski, A.; Trzybiński, D. Networks of intermolecular interactions involving nitro groups in the crystals of three polymorphs of 9-aminoacridinium 2,4-dinitrobenzoate∙2,4-dinitrobenzoic acid. J. Mol. Struct. 2013, 1049, 90–98. [Google Scholar] [CrossRef]
- Lahav, M.; Leiserowitz, L. The effect of solvent on crystal growth and morphology. Chem. Eng. Sci. 2001, 56, 2245–2253. [Google Scholar] [CrossRef]
- Stoica, C.; Verwer, P.; Meekes, H.; Van Hoof, P.J.C.M.; Kaspersen, F.M.; Vlieg, E. Understanding the effect of a solvent on the crystal habit. Cryst. Growth Des. 2004, 4, 765–768. [Google Scholar] [CrossRef]
- Khamar, D.; Zeglinski, J.; Mealey, D.; Rasmuson, Å.C. Investigating the role of solvent–solute interaction in crystal nucleation of salicylic acid from organic solvents. J. Am. Chem. Soc. 2014, 136, 11664–11673. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Hammond, R.B.; Roberts, K.J.; Marziano, I.; Nichols, G. Precision measurement of the growth rate and mechanism of ibuprofen {001} and {011} as a function of crystallization environment. CrystEngComm 2014, 16, 4568–4586. [Google Scholar] [CrossRef]
- Tilbury, C.J.; Green, D.A.; Marshall, W.J.; Doherty, M.F. Predicting the effect of solvent on the crystal habit of small organic molecules. Cryst. Growth Des. 2016, 16, 2590–2604. [Google Scholar] [CrossRef]
- Jia, L.; Svärd, M.; Rasmuson, Å.C. Crystal growth of salicylic acid in organic solvents. Cryst. Growth Des. 2017, 17, 2964–2974. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin. J. Cryst. Growth 2017, 480, 18–27. [Google Scholar] [CrossRef]
- Rosbottom, I.; Ma, C.Y.; Turner, T.D.; O’Connell, R.A.; Loughrey, J.; Sadiq, G.; Davey, R.J.; Roberts, K.J. Influence of solvent composition on the crystal morphology and structure of p-aminobenzoic acid crystallized from mixed ethanol and nitromethane solutions. Cryst. Growth Des. 2017, 17, 4151–4161. [Google Scholar] [CrossRef] [Green Version]
- Lynch, A.; Verma, V.; Zeglinski, J.; Bannigan, P.; Rasmuson, Å. Face indexing and shape analysis of salicylamide crystals grown in different solvent. CrystEngComm 2019, 21, 2648–2659. [Google Scholar] [CrossRef]
- Grześkiewicz, A.M.; Ostrowska, A.; Kubicki, M. Solvent influence on the crystal packing of 6-aminothiocytosine. Acta Crystallogr. Sect. C Struct. Chem. 2020, 76, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Trzybiński, D.; Sikorski, A. Solvent-bridged frameworks of hydrogen bonds in crystals of 9-aminoacridinium halides. CrystEngComm 2013, 15, 6808–6818. [Google Scholar] [CrossRef]
- Price, C.P.; Glick, G.D.; Matzger, A.J. Dissecting the behavior of a promiscuous solvate former. Angew. Chem. Int. Ed. 2006, 45, 2062–2066. [Google Scholar] [CrossRef]
- Braun, D.E.; Gelbrich, T.; Griesser, U.J. Experimental and computational approaches to produce and characterise isostructural solvates. CrystEngComm 2019, 21, 5533–5545. [Google Scholar] [CrossRef]
- Biradha, K. Crystal engineering: From weak hydrogen bonds to co-ordination bonds. CrystEngComm 2003, 5, 374–384. [Google Scholar] [CrossRef]
- Gilli, P.; Bertolasi, V.; Pretto, L.; Lyčka, A.; Gilli, G. The nature of solid-state N-H⋯O/O-H⋯N tautomeric competition in resonant systems. Intramolecular proton transfer in low-barrier hydrogen bonds formed by the ⋯O=C-C=N-NH⋯⇄⋯HO-C=C-N=N⋯ ketohydrazone-azoenol system. A variable-temperature x-ray crystallographic and DFT computational study. J. Am. Chem. Soc. 2002, 124, 13554–13567. [Google Scholar]
- Basavoju, S.; Boström, D.; Velaga, S.P. Pharmaceutical cocrystal and salts of norfloxacin. Cryst. Growth Des. 2006, 6, 2699–2708. [Google Scholar] [CrossRef]
- Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. Covalent nature of the strong homonuclear hydrogen bond. Study of the O–H⋯O system by crystal structure correlation Methods1. J. Am. Chem. Soc. 1994, 116, 909–915. [Google Scholar] [CrossRef]
- Grabowski, S.J. A new measure of hydrogen bonding strength—Ab initio and atoms in molecules studies. Chem. Phys. Lett. 2001, 338, 361–366. [Google Scholar] [CrossRef]
- Thomas, S.P.; Pavan, M.S.; Guru Row, T.N. Charge density analysis of ferulic acid: Robustness of a trifurcated C-H···O hydrogen bond. Cryst. Growth Des. 2012, 12, 6083–6091. [Google Scholar] [CrossRef]
- Steiner, T. C-H⋯O hydrogen bonding in crystals. Crystallogr. Rev. 2003, 9, 177–228. [Google Scholar] [CrossRef]
- Weiss, H.-C.; Bläser, D.; Boese, R.; Doughan, B.M.; Haley, M.M. C-H⋯π interactions in ethynylbenzenes: The crystal structures of ethynylbenzene and 1,3,5-triethynylbenzene, and a redetermination of the structure of 1,4-diethynylbenzene. Chem. Commun. 1997, 18, 1703–1704. [Google Scholar] [CrossRef]
- Steiner, T.; Koellner, G. Hydrogen bonds with π-acceptors in proteins: Frequencies and role in stabilizing local 3D structures. J. Mol. Biol. 2001, 305, 535–557. [Google Scholar] [CrossRef]
- Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm 2004, 6, 130–158. [Google Scholar] [CrossRef]
- Novoa, J.J.; Mota, F. The C-Hπ bonds: Strength, identification, and hydrogen-bonded nature: A theoretical study. Chem. Phys. Lett. 2000, 318, 345–354. [Google Scholar] [CrossRef]
- Hunter, C.A.; Sanders, J.K.M. The nature of π–π interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534. [Google Scholar] [CrossRef]
- Huang, J.; Kertesz, M. Intermolecular covalent π–π bonding interaction indicated by bond distances, energy bands, and magnetism in biphenalenyl biradicaloid molecular crystal. J. Am. Chem. Soc. 2007, 129, 1634–1643. [Google Scholar] [CrossRef]
- Shukla, R.; Mohan, T.P.; Vishalakshi, B.; Chopra, D. Experimental and theoretical analysis of lp⋯π intermolecular interactions in derivatives of 1,2,4-triazoles. CrystEngComm 2014, 16, 1702–1713. [Google Scholar] [CrossRef]
- Nelyubina, Y.V.; Barzilovich, P.Y.; Antipin, M.Y.; Aldoshin, S.M.; Lyssenko, K.A. Cation-π and lone pair-π interactions combined in one: The first experimental evidence of (H3O-lp)+⋯π-system binding in a crystal. ChemPhysChem 2011, 12, 2895–2898. [Google Scholar] [CrossRef] [PubMed]
- CrysAlis CCD and CrysAlis RED; Version 1.171.36.24; Oxford Diffraction Ltd.: Yarnton, UK, 2012.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.K. ORTEP II, Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1976.
- Motherwell, S.; Clegg, S. PLUTO-78, Program for Drawing and Molecular Structure; University of Cambridge: Cambridge, UK, 1978. [Google Scholar]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Korndörfer, I.P.; Brueckner, F.; Skerra, A. The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins. J. Mol. Biol. 2007, 370, 887–898. [Google Scholar] [CrossRef]
- Muraki, N.; Nomata, J.; Ebata, K.; Mizoguchi, T.; Shiba, T.; Tamiaki, H.; Kurisu, G.; Fujita, Y. X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 2010, 465, 110–114. [Google Scholar] [CrossRef]
- Wang, J.-R.; Ye, C.; Mei, X. Structural and physicochemical aspects of hydrochlorothiazide co-crystals. CrystEngComm 2014, 16, 6996–7003. [Google Scholar] [CrossRef]
- Thakur, T.S.; Desiraju, G.R. Crystal structure prediction of a Co-crystal using a supramolecular synthon approach: 2-methylbenzoic acid−2-amino-4-methylpyrimidine. Cryst. Growth Des. 2008, 8, 4031–4044. [Google Scholar] [CrossRef]
- Smith, G.; Wermuth, U.D.; White, J.M. Zero-, one- and two-dimensional hydrogen-bonded structures in the 1: 1 proton-transfer compounds of 4, 5-dichlorophthalic acid with the monocyclic heteroaromatic Lewis bases 2-aminopyrimidine, nicotinamide and isonicotinamide. Acta Crystallogr. C Cryst. Struct. Commun. 2009, 65, o103–o107. [Google Scholar] [CrossRef] [Green Version]
- Ebenezer, S.; Muthiah, P.T.; Butcher, R.J. Design of a series of isostructural Co-crystals with aminopyrimidines: Isostructurality through chloro/methyl exchange and studies on supramolecular architectures. Cryst. Growth Des. 2011, 11, 3579–3592. [Google Scholar] [CrossRef]
Compound | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Chemical formula | C24H25N3O6 | C25H27N3O6 | C27H31N3O6 | C27H32N3O7 |
Formula weight/g·mol−1 | 451.47 | 465.49 | 493.55 | 510.56 |
Crystal system | triclinic | triclinic | triclinic | triclinic |
Space group | P-1 | P-1 | P-1 | P-1 |
a/Å | 8.6152(11) | 8.8199(7) | 9.7818(6) | 8.2878(7) |
b/Å | 9.1061(9) | 9.2600(5) | 11.5275(7) | 12.2101(12) |
c/Å | 14.7634(14) | 14.5715(9) | 12.7367(7) | 13.4549(16) |
α/° | 85.129(8) | 88.489(5) | 68.525(6) | 104.626(10) |
β/° | 88.785(9) | 86.249(5) | 73.587(5) | 91.630(8) |
γ/° | 77.104(10) | 80.269(6) | 74.459(6) | 90.774(8) |
V/Å3 | 1124.9(2) | 1170.3(1) | 1260.1(1) | 1316.6(2) |
Z | 2 | 2 | 2 | 2 |
T/K | 293(2) | 293(2) | 293(2) | 293(2) |
λMo/Å | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
ρcalc/g·cm–3 | 1.333 | 1.321 | 1.301 | 1.290 |
F(000) | 476 | 492 | 524 | 544 |
µ/mm−1 | 0.097 | 0.095 | 0.093 | 0.094 |
θ range/° | 3.34–25.01 | 3.54–25.01 | 3.44–25.01 | 3.19–25.01 |
Completness θ/% | 99.7 | 99.7 | 99.8 | 99.7 |
Reflections collected | 7273 | 7669 | 17038 | 8181 |
Reflectionsunique | 3954[Rint = 0.0323] | 4112[Rint = 0.0168] | 4430[Rint = 0.0270] | 4628[Rint = 0.0526] |
Data/restraints/parameters | 3954/0/340 | 4112/4/347 | 4430/2/375 | 4628/2/392 |
Goodness of fit on F2 | 1.020 | 1.014 | 1.042 | 0.996 |
Final R1 value (I>2σ(I)) | 0.0542 | 0.0458 | 0.0502 | 0.0667 |
Final wR2 value (I>2σ(I)) | 0.1020 | 0.1194 | 0.1242 | 0.1090 |
Final R1 value (all data) | 0.1017 | 0.0593 | 0.0667 | 0.1909 |
Final wR2 value (all data) | 0.1205 | 0.1298 | 0.1351 | 0.1544 |
CCDC number | 1954713 | 1954715 | 1954714 | 1954716 |
Compound | D–H···A | d(D–H) [Å] | d(H···A) [Å] | d(D⋯A) (Å) | ∠D–H⋯A (°) |
---|---|---|---|---|---|
1 | N(10)–H(10)···O(28) | 0.91(2) | 1.96(2) | 2.865(3) | 172(3) |
N(15)–H(15A)···O(27) i | 0.92(3) | 2.11(3) | 2.961(3) | 155(2) | |
N(15)–H(15B)···O(32) | 0.93(3) | 2.05(3) | 2.951(9) | 159(2) | |
N(15)–H(15B)···O(32A) | 0.93(3) | 2.02(5) | 2.91(5) | 161(3) | |
N(16)–H(16A)···O(27) ii | 0.96(3) | 2.05(3) | 2.979(3) | 163(2) | |
N(16)–H(16B)···O(31) iii | 0.87(3) | 2.12(3) | 2.975(3) | 167(2) | |
O(32)–H(32)···O(31) iv | 0.89(6) | 1.90(6) | 2.754(9) | 160(6) | |
C(1)–H(1)···O(32A) | 0.93 | 2.56 | 3.46(4) | 161 | |
O(28)–H(28)···O(30) | 1.26(3) | 1.15(3) | 2.406(2) | 176(3) | |
Symmetry code: (i) −x,1−y,1−z; (ii) x,−1+y,z; (iii) −x,1−y,−z; (iv) x,y,1+z. | |||||
2 | N(10)–H(10)···O(28) | 0.88(2) | 2.00(2) | 2.871(2) | 171(2) |
N(15)–H(15A)···O(27) i | 0.91(2) | 2.10(2) | 2.952(2) | 154(2) | |
N(15)–H(15B)···O(32) | 0.90(2) | 2.03(2) | 2.906(4) | 163(2) | |
N(15)–H(15B)···O(32A) | 0.90(2) | 2.06(3) | 2.931(18) | 162(2) | |
N(16)–H(16A)···O(31) ii | 0.89(2) | 2.09(2) | 2.961(2) | 168(2) | |
N(16)–H(16B)···O(27) iii | 0.86(3) | 2.14(3) | 2.974(2) | 164(2) | |
O(32)–H(32)···O(31) iv | 0.82 | 2.23 | 2.789(5) | 126 | |
C(1)–H(1)···O(32) | 0.93 | 2.58 | 3.455(4) | 157 | |
C(1)–H(1)···O(32A) | 0.93 | 2.57 | 3.433(2) | 154 | |
O(28)–H(28)···O(30) | 1.31(3) | 1.08(3) | 2.392(2) | 173(3) | |
Symmetry code: (i) −x,1−y,1−z; (ii) −x,1−y,−z; (iii) x,−1+y,z; (iv) x,y,−1+z. | |||||
3 | N(10)–H(10)···O(32) | 0.90(2) | 1.96(2) | 2.847(5) | 169(2) |
N(10)–H(10)···O(32A) | 0.90(2) | 1.88(2) | 2.772(1) | 173(2) | |
N(15)–H(15A)···O(27) | 0.81(2) | 2.13(2) | 2.860(2) | 150(2) | |
N(15)–H(15B)···O(30) i | 0.90(3) | 2.04(3) | 2.870(3) | 153(2) | |
N(16)–H(16A)···O(31) ii | 0.87(2) | 2.06(2) | 2.918(3) | 168(2) | |
N(16)–H(16B)···O(31) iii | 0.89(3) | 2.53(3) | 3.108(3) | 123(2) | |
O(32)–H(32)···O(27) iv | 0.82 | 1.94 | 2.728(6) | 162 | |
O(28)–H(28)···O(30) | 1.21(3) | 1.19(3) | 2.388(2) | 169(3) | |
Symmetry code: (i) 1−x,1−y,2−z; (ii) 1+x,y,−1+z; (iii) 2−x,−y,2-z; (iv) 2−x,1−y,1−z. | |||||
4 | N(10)–H(10)···O(37) | 0.94(4) | 1.87(4) | 2.779(6) | 164(3) |
N(15)–H(15A)···O(27) | 0.87(4) | 2.33(4) | 3.171(5) | 162(3) | |
N(15)–H(15B)···O(32) | 1.03(4) | 1.97(4) | 2.976(1) | 165(3) | |
N(15)–H(15B)···O(32A) | 1.03(4) | 1.91(5) | 2.92(3) | 167(3) | |
N(16)–H(16A)···O(31) i | 0.93(5) | 2.51(5) | 3.348(6) | 150(3) | |
N(16)–H(16B)···O(31) ii | 0.96(5) | 2.09(5) | 3.037(6) | 169(4) | |
O(32)–H(32)···O(30) iii | 0.82 | 2.57 | 3.330(1) | 154 | |
O(37)–H(37A)···O(27) iv | 0.72(7) | 2.18(7) | 2.878(5) | 165(8) | |
O(37)–H(37B)···O(28) i | 0.87(7) | 1.97(7) | 2.812(5) | 163(6) | |
C(8)–H(8)···O(27) | 0.93 | 2.45 | 3.376(5) | 174 | |
O(28)–H(28)···O(30) | 1.26(6) | 1.11(6) | 2.371(6) | 175(5) | |
Symmetry code: (i) x,−1+y,z; (ii) 2−x,2−y,2−z; (iii) 2−x,2−y,1−z; (iv) 2−x,1−y,1−z. |
Compound | CgI a | CgJ a | CgI···CgJ b | Dihedral Angle c | Interplanar Distance d | Offset e |
---|---|---|---|---|---|---|
1 | 1 | 1 i | 3.806(1) | 0.0(1) | 3.402(1) | 1.708 |
1 | 2 v | 3.952(1) | 1.5(1) | 3.554(1) | 1.732 | |
1 | 3 i | 3.689(2) | 3.4(1) | 3.458(1) | 1.321 | |
2 | 2 v | 4.001(2) | 0.0(1) | 3.566(1) | 1.814 | |
2 | 3 i | 3.913(1) | 4.8(1) | 3.570(1) | 1.880 | |
Symmetry code: (i) −x,1−y,1−z; (v) 1−x,1−y,1−z. | ||||||
1 | 1 i | 3.709(1) | 0.0(1) | 3.370(1) | 1.550 | |
2 | 1 | 3 i | 3.615(1) | 2.3(1) | 3.404(1) | 1.200 |
3 | 2 i | 3.800(1) | 3.1(1) | 3.498(1) | 1.483 | |
Symmetry code: (i) −x,1−y,1−z. | ||||||
1 | 1 iv | 3.871(1) | 0.0(1) | 3.386(1) | 1.877 | |
3 | 1 | 3 iv | 3.568(1) | 1.7(1) | 3.409(1) | 1.027 |
2 | 3 iv | 3.948(1) | 3.4(1) | 3.499(1) | 2.020 | |
Symmetry code: (iv) 2−x,1−y,1−z. | ||||||
1 | 1 iv | 3.618(2) | 0.0(2) | 3.394(1) | 1.252 | |
4 | 1 | 3 iv | 3.743(2) | 2.5(2) | 3.377(1) | 1.473 |
2 | 3 iv | 3.731(2) | 4.2(2) | 3.495(1) | 1.411 | |
Symmetry code: (iv) 2−x,1−y,1−z. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirocki, A.; Sikorski, A. The Influence of Solvent on the Crystal Packing of Ethacridinium Phthalate Solvates. Materials 2020, 13, 5073. https://doi.org/10.3390/ma13225073
Mirocki A, Sikorski A. The Influence of Solvent on the Crystal Packing of Ethacridinium Phthalate Solvates. Materials. 2020; 13(22):5073. https://doi.org/10.3390/ma13225073
Chicago/Turabian StyleMirocki, Artur, and Artur Sikorski. 2020. "The Influence of Solvent on the Crystal Packing of Ethacridinium Phthalate Solvates" Materials 13, no. 22: 5073. https://doi.org/10.3390/ma13225073
APA StyleMirocki, A., & Sikorski, A. (2020). The Influence of Solvent on the Crystal Packing of Ethacridinium Phthalate Solvates. Materials, 13(22), 5073. https://doi.org/10.3390/ma13225073