Cyclic Load Test and Finite Element Analysis of NOVEL Buckling-Restrained Brace
Abstract
:1. Introduction
2. Test Program
2.1. Test Specimens
2.2. Test Setup
2.3. Loading Protocol
3. Test Results
4. Finite Element Analysis
4.1. Finite Element Model of Test Specimens
4.2. Parametric Study
5. Conclusions
- In test specimens with Pcr/Py = 1.68, global buckling occurred at a compressive force equal to 74–77% of the critical buckling load when the casing moment reached 95–98% of the casing yield moment. This result indicates that global buckling occurred owing to flexure yielding of the casing, and both the stiffness and strength of the casing should be considered when proportioning a BRB.
- In test specimens with a core flange width-to-thickness ratio of 14.28, flange buckling occurred at a core strain of 1.2%. The flange buckling resulted in friction locking between the core and the casing due to increased contact pressure in the vicinity of the buckled flange. This phenomenon led to axial force transfer to the casing and a sudden increase in stiffness.
- The finite element parametric study indicated that increasing the flange thickness is more feasible than providing flange stiffeners or adjusting the length of the unconstrained-length stiffener. The minimum core flange width-to-thickness ratio that resulted in a stable hysteresis up to the 2.0Δbm cycle (1.46% core strain) was 11.76.
- Further research is needed to investigate the influence of utilizing single unconstrained length as opposed to two unconstrained lengths.
Author Contributions
Funding
Conflicts of Interest
References
- Nakashima, A. From Infancy to Maturity of Buckling Restrained Braces Research. In Proceedings of the Thirteenth World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. Paper No. 1732. [Google Scholar]
- Takeuchi, T. Buckling-Restrained Brace: History, Design and Applications. Key. Eng. Mater. 2018, 763, 50–60. [Google Scholar] [CrossRef]
- Jia, L.J.; Ge, H.; Maruyama, R.; Shinohara, K. Development of a novel high-performance all-steel fish-bone shaped buckling-restrained brace. Eng. Struct. 2017, 138, 105–119. [Google Scholar] [CrossRef]
- Hoveidae, N.; Tremblay, R.; Rafezy, B.; Davaran, A. Numerical investigation of seismic behavior of short-core all-steel buckling restrained braces. J. Constr. Steel Res. 2015, 114, 89–99. [Google Scholar] [CrossRef]
- Judd, J.P.; Marinovic, I.; Eatherton, M.R.; Hyder, C.; Phillips, A.R.; Tola, A.T.; Charney, F.A. Cyclic tests of all-steel web-restrained buckling-restrained brace subassemblages. J. Constr. Steel Res. 2016, 125, 164–172. [Google Scholar] [CrossRef]
- Della Corte, G.; D’Aniello, M.; Landolfo, R. Field testing of all-steel buckling-restrained braces applied to a damaged reinforced concrete building. J. Struct. Eng. 2015, 141, D4014004. [Google Scholar] [CrossRef]
- Wang, C.L.; Liu, Y.; Zhou, L. Experimental and numerical studies on hysteretic behavior of all-steel bamboo-shaped energy dissipaters. Eng. Struct. 2018, 165, 38–49. [Google Scholar] [CrossRef]
- Ju, Y.K.; Kim, M.H.; Kim, J.; Kim, S.D. Component tests of buckling-restrained braces with unconstrained length. Eng. Struct. 2009, 31, 507–516. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, C.H.; Ju, Y.K.; Kim, S.D. Subassemblage test of buckling-restrained braces with H-shaped steel core. Struct. Des. Tall Spec. Build. 2015, 24, 243–256. [Google Scholar] [CrossRef]
- Wang, C.L.; Gao, Y.; Cheng, X.; Zeng, B.; Zhao, S. Experimental investigation on H-section buckling-restrained braces with partially restrained flange. Eng. Struct. 2019, 15, 109584. [Google Scholar] [CrossRef]
- Li, W.; Wu, B.; Ding, Y.; Zhao, J. Experimental performance of buckling-restrained braces with steel cores of H-section and half-wavelength evaluation of higher-order local buckling. Adv. Struct. Eng. 2017, 20, 641–657. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, B.; Ou, J. Flexural demand on pin-connected buckling-restrained braces and design recommendations. J. Struct. Eng. 2012, 138, 1398–1415. [Google Scholar] [CrossRef]
- Watanabe, A.; Hitomi, Y.; Saeki, E.; Wada, A.; Fujimoto, M. Properties of brace encased in buckling-restraining concrete and steel tube. In Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo, Japan, 2–6 August 1988; Volume 4, pp. 719–724. [Google Scholar]
- Pan, W.H.; Tong, J.Z.; Guo, Y.L.; Wang, C.M. Optimal design of steel buckling-restrained braces considering stiffness and strength requirements. Eng. Struct. 2020, 211, 110437. [Google Scholar] [CrossRef]
- Chou, C.C.; Chen, S.Y. Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces. Eng. Struct. 2010, 32, 2108–2121. [Google Scholar] [CrossRef]
- American Institute of Steel Construction (AISC). Specification for Structural Steel Buildings; AISC 360-16; American Institute of Steel Construction: Chicago, IL, USA, 2016. [Google Scholar]
- American Institute of Steel Construction (AISC). Seismic Provisions for Structural Steel Buildings; AISC 341–16; American Institute of Steel Construction: Chicago, IL, USA, 2016. [Google Scholar]
- ABAQUS/CAE, version 2017; Software For Technical Computation; Simulia Corp: Providence, RI, USA, 2017.
- Yu, Y.; Samali, B.; Zhang, C.; Askari, M. Hysteresis modeling for cyclic behavior of concrete-steel composite joints using modified CSO. Steel Compos. Struct. 2019, 33, 277–298. [Google Scholar] [CrossRef]
Member | Coupon Location | Thickness (mm) | Yield Strength, fy (MPa) | Tensile Strength, fu (MPa) | Elongation (%) |
---|---|---|---|---|---|
Core | Flange | 14 | 321 | 497 | 37.6 |
Web | 8 | 328 | 488 | 37.9 | |
Casing | Wall | 10 | 324 | 492 | 36.2 |
Specimen No. | Core | Casing | |||||
---|---|---|---|---|---|---|---|
Py (kN) | Pu (kN) | Pcr (kN) | Pcr/Py | My (kN·m) | Pcy1 (kN) | Pcy/Py | |
1 | 2249 | 3455 | 3774 | 1.68 | 189 | 2949 | 1.31 |
2 | 2249 | 3455 | 3774 | 1.68 | 189 | 2949 | 1.31 |
3 | 2249 | 3455 | 11,052 | 4.91 | 493 | 8412 | 3.74 |
4 | 2249 | 3455 | 11,052 | 4.91 | 493 | 8412 | 3.74 |
Specimen No. | Pmax (kN) | Δmax (mm) | εmax (%) | Failure Mode | |||||
---|---|---|---|---|---|---|---|---|---|
(+) 1 | (−) 2 | (+) | (−) | (+) | (−) | ||||
1 | 2895 | 2678 | 51.2 | 68.1 | 1.2 | 1.5 | 0.77 | 0.98 | Global buckling |
2 | 2774 | 2564 | 47.9 | 44.3 | 1.1 | 1.0 | 0.74 | 0.95 | Global buckling |
3 | 2893 5 | 2644 | 53.8 | 55.9 | 1.2 | 1.2 | 0.26 | 0.34 | Core flange buckling |
4 | 2049 | 1894 | 29.9 6 | 41.5 | 0.5 | 0.7 | 0.22 7 | 0.29 | - |
Model | Lus | a | b | c | d | e | f | g | tf1 |
---|---|---|---|---|---|---|---|---|---|
L340 | 340 | - | 14 | ||||||
L510 | 510 | 14 | |||||||
L850 | 850 | 14 | |||||||
L1500 | 1500 | 14 | |||||||
FS4-3000 | 510 | 500 | 1000 | 1500 | - | - | - | - | 14 |
FS5-2000 | 510 | 100 | 150 | 200 | 250 | - | - | - | 14 |
FS6-2000 | 510 | 100 | 200 | 300 | 400 | 1000 | - | - | 14 |
FS7-2000 | 510 | 100 | 200 | 300 | 400 | 500 | 500 | - | 14 |
FS7-3000 | 510 | 250 | 250 | 250 | 250 | 500 | 1500 | - | 14 |
FS8-3000 | 510 | 250 | 250 | 250 | 250 | 250 | 250 | 1500 | 14 |
TF15 | 510 | - | 15 | ||||||
TF16 | 510 | 16 | |||||||
TF17 | 510 | 17 | |||||||
TF18 | 510 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemayehu, R.W.; Kim, Y.; Bae, J.; Ju, Y.K. Cyclic Load Test and Finite Element Analysis of NOVEL Buckling-Restrained Brace. Materials 2020, 13, 5103. https://doi.org/10.3390/ma13225103
Alemayehu RW, Kim Y, Bae J, Ju YK. Cyclic Load Test and Finite Element Analysis of NOVEL Buckling-Restrained Brace. Materials. 2020; 13(22):5103. https://doi.org/10.3390/ma13225103
Chicago/Turabian StyleAlemayehu, Robel Wondimu, Youngsik Kim, Jaehoon Bae, and Young K. Ju. 2020. "Cyclic Load Test and Finite Element Analysis of NOVEL Buckling-Restrained Brace" Materials 13, no. 22: 5103. https://doi.org/10.3390/ma13225103
APA StyleAlemayehu, R. W., Kim, Y., Bae, J., & Ju, Y. K. (2020). Cyclic Load Test and Finite Element Analysis of NOVEL Buckling-Restrained Brace. Materials, 13(22), 5103. https://doi.org/10.3390/ma13225103