Epitaxial Growth of GaN on Magnetron Sputtered AlN/Hexagonal BN/Sapphire Substrates
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kolbe, T.; Knauer, A.; Rass, J.; Cho, H.K.; Hagedorn, S.; Einfeldt, S.; Weyers, M. Effect of electron blocking layer doping and composition on the performance of 310 nm light emitting diodes. Materials 2017, 10, 1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Kang, M.J.; Kim, J.J.; Seo, K.S.; Cha, H.Y. Effects of Recessed-Gate Structure on AlGaN/GaN-on-SiC MIS-HEMTs with Thin AlOxNy MIS Gate. Materials 2020, 13, 1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, P.; Zhang, X.; Xu, S.; Zhou, X.; Wu, J.; Hao, Y. Using a Multi-Layer Stacked AlGaN/GaN Structure to Improve the Current Spreading Performance of Ultraviolet Light-Emitting Diodes. Materials 2020, 13, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Balushi, Z.Y.; Wang, K.; Ghosh, R.K.; Vilá, R.A.; Eichfeld, S.M.; Caldwell, J.D.; Qin, X.Y.; Lin, Y.C.; DeSario, P.A.; Stone, G.; et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 2016, 15, 1166–1171. [Google Scholar] [CrossRef]
- Tao, H.; Xu, S.; Zhang, J.; Li, P.; Lin, Z.; Hao, Y. Numerical investigation on the enhanced performance of N-polar AlGaN-based ultraviolet light-emitting diodes with superlattice p-type doping. IEEE Trans. Electron Devices 2018, 66, 478–484. [Google Scholar] [CrossRef]
- Peng, R.; Meng, X.; Xu, S.; Zhang, J.; Li, P.; Huang, J.; Hao, Y. Study on Dislocation Annihilation Mechanism of the High-Quality GaN Grown on Sputtered AlN/PSS and Its Application in Green Light-Emitting Diodes. IEEE Trans. Electron Devices 2019, 66, 2243–2248. [Google Scholar] [CrossRef]
- Roccaforte, F.; Greco, G.; Fiorenza, P.; Iucolano, F. An overview of normally-off GaN-based high electron mobility transistors. Materials 2019, 12, 1599. [Google Scholar] [CrossRef] [Green Version]
- Bour, D.P.; Nickel, N.M.; Van de Walle, C.G.; Kneissl, M.S.; Krusor, B.S.; Mei, P.; Johnson, N.M. Polycrystalline nitride semiconductor light-emitting diodes fabricated on quartz substrates. Appl. Phys. Lett. 2000, 76, 2182–2184. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.K.; Vaudo, R.P.; Phanse, V.M.; Görgens, L.; Ambacher, O.; Stutzmann, M. Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff. Jpn. J. Appl. Phys. 1999, 38, L217–L219. [Google Scholar] [CrossRef]
- Rogers, D.J.; Teherani, F.H.; Ougazzaden, A.; Gautier, S.; Divay, L.; Lusson, A.; Correira, M.R. Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN. Appl. Phys. Lett. 2007, 91, 071120. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Wang, L.; Hao, Z.; Luo, Y.; Sun, C.; Wang, J.; Li, H. Van der Waals Epitaxy of III-Nitride Semiconductors Based on 2D Materials for Flexible Applications. Adv. Mater. 2020, 32, 1903407. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Ning, J.; Zhang, J.; Yan, C.; Wang, B.; Zhang, Y.; Hao, Y. Transferable GaN Enabled by Selective Nucleation of AlN on Graphene for High-Brightness Violet Light-Emitting Diodes. Adv. Opt. Mater. 2020, 8, 1901632. [Google Scholar] [CrossRef]
- Chang, H.; Chen, Z.; Li, W.; Yan, J.; Hou, R.; Yang, S.; Liu, Z.; Yuan, G.; Wang, J.; Li, J.; et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl. Phys. Lett. 2019, 114, 091107. [Google Scholar] [CrossRef] [Green Version]
- Paduano, Q.; Snure, M.; Siegel, G.; Thomson, D.; Look, D. Growth and characteristics of AlGaN/GaN heterostructures on sp2-bonded BN by metal-organic chemical vapor deposition. J. Mater. Res. 2016, 31, 2204–2213. [Google Scholar] [CrossRef]
- Ayari, T.; Sundaram, S.; Li, X.; El Gmili, Y.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN. Appl. Phys. Lett. 2016, 108, 171106. [Google Scholar] [CrossRef]
- Kim, J.; Bayram, C.; Park, H.; Cheng, C.W.; Dimitrakopoulos, C.; Ott, J.A.; Reuter, K.B.; Bedell, S.W.; Sadana, D.K. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 2014, 5, 4836. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Kim, J.; Yoo, H.; Liu, J.; Kim, S.; Baik, C.W.; Cho, C.R.; Kang, J.G.; Kim, M.; Braun, P.V.; et al. Heteroepitaxial Growth of GaN on Unconventional Templates and Layer-Transfer Techniques for Large-Area, Flexible/Stretchable Light-Emitting Diodes. Adv. Opt. Mater. 2016, 4, 505–521. [Google Scholar] [CrossRef]
- Freitas, R.R.Q.; Gueorguiev, G.K.; de Brito Mota, F.; De Castilho, C.M.C.; Stafström, S. Kakanakova-Georgieva, A. Reactivity of adducts relevant to the deposition of hexagonal BN from first-principles calculations. Chem. Phys. Lett. 2013, 583, 119–124. [Google Scholar] [CrossRef]
- Dos Santos, R.B.; de Brito Mota, F.; Rivelino, R.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Van der Waals stacks of few-layer h-AlN with graphene: An ab initio study of structural, interaction and electronic properties. Nanotechnology 2016, 27, 145601. [Google Scholar] [CrossRef] [Green Version]
- Hiroki, M.; Kumakura, K.; Kobayashi, Y.; Akasaka, T.; Makimoto, T.; Yamamoto, H. Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN. Appl. Phys. Lett. 2014, 105, 193509. [Google Scholar] [CrossRef]
- Gupta, P.; Rahman, A.A.; Hatui, N.; Parmar, J.B.; Chalke, B.A.; Bapat, R.D.; Purandare, S.C.; Deshmukh, M.M.; Bhattacharya, A. Free-standing semipolar III-nitride quantum well structures grown on chemical vapor deposited graphene layers. Appl. Phys. Lett. 2013, 103, 181108. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kumakura, K.; Akasaka, T.; Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 2012, 484, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yan, J.; Zhang, L.; Chen, X.; Wei, T.; Li, Y.; Liu, Z.; Wei, X.; Zhang, Y.; Wang, J.; et al. Growth mechanism of AlN on hexagonal BN/sapphire substrate by metal–organic chemical vapor deposition. CrystEngComm 2017, 19, 5849–5856. [Google Scholar] [CrossRef]
- Wu, Q.; Guo, Y.; Sundaram, S.; Yan, J.; Zhang, L.; Wei, T.; Wei, X.; Wang, J.; Ougazzaden, A.; Li, J. Exfoliation of AlN film using two-dimensional multilayer hexagonal BN for deep-ultraviolet light-emitting diodes. Appl. Phys. Express 2019, 12, 015505. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Wei, T.; Yang, S.; Dou, Z.; Wang, Y.; Ci, H.; Chang, H.; Qi, Y.; Yan, J.; et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 2019, 31, 1807345. [Google Scholar] [CrossRef] [PubMed]
- Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 1986, 48, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Jiao, W.Y.; Li, J.C.; Collar, K.; Kim, T.H.; Leach, J.H.; Brown, A.S. Effect of strain in sputtered AlN buffer layers on the growth of GaN by molecular beam epitaxy. Appl. Phys. Lett. 2015, 107, 032102. [Google Scholar] [CrossRef]
- Paskova, T.; Valcheva, E.; Birch, J.; Tungasmita, S.; Persson, P.O.; Paskov, P.P.; Monemar, B. Defect and stress relaxation in HVPE-GaN films using high temperature reactively sputtered AlN buffer. J. Cryst. Growth 2001, 230, 381–386. [Google Scholar] [CrossRef]
- Dos Santos, R.B.; Rivelino, R.; Mota, F.D.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. Dopant species with Al–Si and N–Si bonding in the MOCVD of AlN implementing trimethylaluminum, ammonia and silane. J. Phys. D-Appl. Phys. 2015, 48, 295104. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Wu, F.; Wan, Q.; Wang, Z.; Zhang, J.; Li, Y.; Dai, J.; Fang, Y.; Wu, Z.; et al. The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition. Appl. Surf. Sci. 2014, 307, 525–532. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Kitaev, Y.E.; Goncharuk, I.N.; Smirnov, A.N.; Graul, J.; Semchinova, O.; Uffmann, D.; Smirnov, M.; Mirgorodsky, A.P.; Evarestov, R.A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 1998, 58, 12899–12907. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Xu, S.R.; Zhang, J.C.; Xie, Y.; Hao, Y. Spatially resolved and orientation dependent Raman mapping of epitaxial lateral overgrowth nonpolar a-plane GaN on r-plane sapphire. Sci. Rep. 2016, 6, 19955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, T.; Nakashima, S.; Nakamura, N.; Furuta, K.; Okumura, H. Raman scattering analysis of gan with various dislocation densities. Phys. Status Solidi(c) 2010, 5, 1789–1791. [Google Scholar] [CrossRef]
- Niikura, E.; Murakawa, K.; Hasegawa, F.; Kawanishi, H. Improvement of crystal quality of AlN and AlGaN epitaxial layers by controlling the strain with the (AlN/GaN) multi-buffer layer. J. Cryst. Growth 2007, 298, 345–348. [Google Scholar] [CrossRef]
- Heinke, H.; Kirchner, V.; Einfeldt, S.; Hommel, D. X-ray diffraction analysis of the defect structure in epitaxial gan. Appl. Phys. Lett. 2000, 77, 2145–2147. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Li, P.; Xu, S.; Zhou, X.; Tao, H.; Yue, W.; Wang, Y.; Wu, J.; Zhang, Y.; Hao, Y. Epitaxial Growth of GaN on Magnetron Sputtered AlN/Hexagonal BN/Sapphire Substrates. Materials 2020, 13, 5118. https://doi.org/10.3390/ma13225118
Wu J, Li P, Xu S, Zhou X, Tao H, Yue W, Wang Y, Wu J, Zhang Y, Hao Y. Epitaxial Growth of GaN on Magnetron Sputtered AlN/Hexagonal BN/Sapphire Substrates. Materials. 2020; 13(22):5118. https://doi.org/10.3390/ma13225118
Chicago/Turabian StyleWu, Jinxing, Peixian Li, Shengrui Xu, Xiaowei Zhou, Hongchang Tao, Wenkai Yue, Yanli Wang, Jiangtao Wu, Yachao Zhang, and Yue Hao. 2020. "Epitaxial Growth of GaN on Magnetron Sputtered AlN/Hexagonal BN/Sapphire Substrates" Materials 13, no. 22: 5118. https://doi.org/10.3390/ma13225118
APA StyleWu, J., Li, P., Xu, S., Zhou, X., Tao, H., Yue, W., Wang, Y., Wu, J., Zhang, Y., & Hao, Y. (2020). Epitaxial Growth of GaN on Magnetron Sputtered AlN/Hexagonal BN/Sapphire Substrates. Materials, 13(22), 5118. https://doi.org/10.3390/ma13225118