Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Ti Disc Preparation
2.3. Sample Coating
2.4. Simulated Body Fluid (SBF) Preparation
2.5. Hydroxyapatite Formation under a Digital Microscope System
2.6. Scanning Electron Microscopy (SEM) Imaging
2.7. Energy Dispersive x-Rays Analysis (EDX)
3. Results
3.1. Optical Magnification
3.2. Scanning Electron Microscopy
3.3. Energy Dispersive Analysis X-rays (EDX)
3.4. Thickness of Hydroxyapatite Layer
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abraham, C.M. A Brief Historical Perspective on Dental Implants, Their Surface Coatings and Treatments. Open Dent. J. 2014, 8, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Romero-Gavilan, F.; Araújo-Gomes, N.; Sánchez-Pérez, A.M.; García-Arnáez, I.; Elortza, F.; Azkargorta, M.; de Llano, J.J.M.; Carda, C.; Gurruchaga, M.; Suay, J.; et al. Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants. Colloids Surf. B Biointerfaces 2018, 162, 316–325. [Google Scholar] [CrossRef]
- Lotz, E.M.; Berger, M.B.; Schwartz, Z.; Boyan, B.D. Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties. Acta Biomater. 2018, 68, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Javadi, A.; Solouk, A.; Haghbin Nazarpak, M.; Bagheri, F. Surface engineering of titanium-based implants using electrospraying and dip coating methods. Mater. Sci. Eng. C 2019, 99, 620–630. [Google Scholar] [CrossRef]
- Velasco-Ortega, E.; Ortiz-García, I.; Jiménez-Guerra, A.; Monsalve-Guil, L.; Muñoz-Guzón, F.; Perez, R.A.; Gil, F.J. Comparison between Sandblasted Acid-Etched and Oxidized Titanium Dental Implants: In Vivo Study. IJMS 2019, 20, 3267. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Lemaître, J.; Bowen, P. A comparative study of simulated body fluids in the presence of proteins. Acta Biomater. 2017, 53, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Rupp, F.; Liang, L.; Geis-Gerstorfer, J.; Scheideler, L.; Hüttig, F. Surface characteristics of dental implants: A review. Dent. Mater. 2018, 34, 40–57. [Google Scholar] [CrossRef]
- Mieszkowska, A.; Folkert, J.; Burke, B.; Addison, O.; Gurzawska, K. Pectin Coating of Titanium and polystyrene Surfaces Modulates the Macrophage Inflammatory Response. Eur. J. Biol. Res. 2018, 8, 84–95. [Google Scholar] [CrossRef]
- Kokubo, T.; Yamaguchi, S. Bioactive Titanate Layers Formed on Titanium and Its Alloys by Simple Chemical and Heat Treatments. TOBEJ 2015, 9, 29–41. [Google Scholar] [CrossRef]
- Ha, S.-W.; Jang, H.L.; Nam, K.T.; Beck, G.R. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 2015, 65, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Moskalewicz, T.; Łukaszczyk, A.; Kruk, A.; Kot, M.; Jugowiec, D.; Dubiel, B.; Radziszewska, A. Porous HA and nanocomposite nc-TiO2/HA coatings to improve the electrochemical corrosion resistance of the Co-28Cr-5Mo alloy. Mater. Chem. Phys. 2017, 199, 144–158. [Google Scholar] [CrossRef]
- Bordea, I.R.; Candrea, S.; Alexescu, G.T.; Bran, S.; Băciuț, M.; Băciuț, G.; Lucaciu, O.; Dinu, C.M.; Todea, D.A. Nano-hydroxyapatite use in dentistry: A systematic review. Drug Metab. Rev. 2020, 52, 319–332. [Google Scholar] [CrossRef]
- Scheel, J.; Hermann, M. Integrated risk assessment of a hydroxyapatite–protein-composite for use in oral care products: A weight-of-evidence case study. Regul. Toxicol. Pharmacol. 2011, 59, 310–323. [Google Scholar] [CrossRef] [Green Version]
- Chieruzzi, M.; Pagano, S.; Lombardo, G.; Marinucci, L.; Kenny, J.M.; Torre, L.; Cianetti, S. Effect of nanohydroxyapatite, antibiotic, and mucosal defensive agent on the mechanical and thermal properties of glass ionomer cements for special needs patients. J. Mater. Res. 2018, 33, 638–649. [Google Scholar] [CrossRef]
- Gafurov, M.R.; Biktagirov, T.B.; Mamin, G.V.; Shurtakova, D.V.; Klimashina, E.S.; Putlyaev, V.I.; Orlinskii, S.B. Study of the effects of hydroxyapatite nanocrystal codoping by pulsed electron paramagnetic resonance methods. Phys. Solid State 2016, 58, 469–474. [Google Scholar] [CrossRef]
- Jemat, A.; Ghazali, M.; Fares, C.; Hsu, S.-M.; Xian, M.; Xia, X.; Ren, F.; Mecholsky, J.J.; Gonzaga, L.; Esquivel-Upshaw, J. Demonstration of a SiC Protective Coating for Titanium Implants. Materials 2020, 13, 3321. [Google Scholar] [CrossRef]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface Modifications and Their Effects on Titanium Dental Implants. BioMed Res. Int. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Aita, H.; Hori, N.; Takeuchi, M.; Suzuki, T.; Yamada, M.; Anpo, M.; Ogawa, T. The Effect of Ultraviolet Functionalization of Titanium on Integration with Bone. Biomaterials 2009, 30, 1015–1025. [Google Scholar] [CrossRef]
- Wang, X.; Qu, Z.; Li, J.; Zhang, E. Comparison study on the solution-based surface biomodification of titanium: Surface characteristics and cell biocompatibility. Surf. Coat. Technol. 2017, 329, 109–119. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Taddei, P.; Siboni, F.; Perrotti, V.; Iezzi, G.; Piattelli, A.; Prati, C. Micro-Topography and Reactivity of Implant Surfaces: An In Vitro Study in Simulated Body Fluid (SBF). Microsc. Microanal. 2015, 21, 190–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, M.; Ting, O.P.; Yee, T.S.; Pushparajan, S.; Swaminathan, D.; Kutty, M.G. Biomimetic Coating of Modified Titanium Surfaces with Hydroxyapatite Using Simulated Body Fluid. Adv. Mater. Sci. Eng. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Carey, P.H.; Ren, F.; Jia, Z.; Batich, C.D.; Camargo, S.E.A.; Clark, A.E.; Craciun, V.; Neal, D.W.; Esquivel-Upshaw, J.F. Antibacterial Properties of Charged TiN Surfaces for Dental Implant Application. Chem. Sel. 2019, 4, 9185–9189. [Google Scholar] [CrossRef] [PubMed]
- Afonso Camargo, S.E.; Mohiuddeen, A.S.; Fares, C.; Partain, J.L.; Carey, P.H.; Ren, F.; Hsu, S.-M.; Clark, A.E.; Esquivel-Upshaw, J.F. Anti-Bacterial Properties and Biocompatibility of Novel SiC Coating for Dental Ceramic. JFB 2020, 11, 33. [Google Scholar] [CrossRef]
- Camargo, S.E.A.; Roy, T.; Carey, P.H., IV; Fares, C.; Ren, F.; Clark, A.E.; Esquivel-Upshaw, J.F. Novel Coatings to Minimize Bacterial Adhesion and Promote Osteoblast Activity for Titanium Implants. JFB 2020, 11, 42. [Google Scholar] [CrossRef]
- Hsu, S.-M.; Ren, F.; Chen, Z.; Kim, M.; Fares, C.; Clark, A.E.; Neal, D.; Esquivel-Upshaw, J.F. Novel Coating to Minimize Corrosion of Glass-Ceramics for Dental Applications. Materials 2020, 13, 1215. [Google Scholar] [CrossRef] [Green Version]
- Boonyawan, D.; Waruriya, P.; Suttiat, K. Characterization of titanium nitride–hydroxyapatite on PEEK for dental implants by co-axis target magnetron sputtering. Surf. Coat. Technol. 2016, 306, 164–170. [Google Scholar] [CrossRef]
- Camargo, W.A.; Takemoto, S.; Hoekstra, J.W.; Leeuwenburgh, S.C.G.; Jansen, J.A.; van den Beucken, J.J.J.P.; Alghamdi, H.S. Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. Acta Biomater. 2017, 57, 511–523. [Google Scholar] [CrossRef]
- Nijhuis, A.W.G.; Takemoto, S.; Nejadnik, M.R.; Li, Y.; Yang, X.; Ossipov, D.A.; Hilborn, J.; Mikos, A.G.; Yoshinari, M.; Jansen, J.A.; et al. Rapid Screening of Mineralization Capacity of Biomaterials by Means of Quantification of Enzymatically Deposited Calcium Phosphate. Tissue Eng. Part C Methods 2014, 20, 838–850. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How Useful Is SBF in Predicting in Vivo Bone Bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Maté Sánchez de Val, J.E.; Calvo-Guirado, J.L.; Gómez-Moreno, G.; Pérez-Albacete Martínez, C.; Mazón, P.; De Aza, P.N. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: Synthesis, characterization of the materials, and SEM analysis. Clin. Oral Implant. Res. 2016, 27, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Akpan, E.S.; Dauda, M.; Kuburi, L.S.; Obada, D.O.; Dodoo-Arhin, D. A comparative study of the mechanical integrity of natural hydroxyapatite scaffolds prepared from two biogenic sources using a low compaction pressure method. Results Phys. 2020, 17, 103051. [Google Scholar] [CrossRef]
- Golestani-Fard, F.; Bayati, M.R.; Zargar, H.R.; Abbasi, S.; Rezaei, H.R. MAO-Preparation of Nanocrystalline Hydroxyapatite–Titania Composite Films: Formation Stages and Effect of the Growth Time. Mater. Res. Bull. 2011, 46, 2422–2426. [Google Scholar] [CrossRef]
- Carradò, A.; Perrin-Schmitt, F.; Le, Q.V.; Giraudel, M.; Fischer, C.; Koenig, G.; Jacomine, L.; Behr, L.; Chalom, A.; Fiette, L.; et al. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration. Dent. Mater. 2017, 33, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Türk, S.; Altınsoy, I.; Çelebi Efe, G.; Ipek, M.; Özacar, M.; Bindal, C. A comparison of pretreatments on hydroxyapatite formation on Ti by biomimetic method. J. Aust. Ceram Soc. 2018, 54, 533–543. [Google Scholar] [CrossRef]
- Nygren, H.; Ilver, L.; Malmberg, P. Mineralization at Titanium Surfaces is a Two-Step Process. JFB 2016, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Masuda, T.; Salvi, G.E.; Offenbacher, S.; Felton, D.A.; Cooper, L.F. Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. Int. J. Oral. Maxillofac. Implant. 1997, 12, 472–485. [Google Scholar]
- Ya-Jing, Y.; Da-Chuan, Y.; Peng, S. Effect of microgravity and a high magnetic field on hydroxyapatite deposition and implications for bone loss in space. Appl. Surf. Sci. 2010, 256, 7535–7539. [Google Scholar] [CrossRef]
- Jayasree, R.; Sampath Kumar, T. Acrylic cement formulations modified with calcium deficient apatite nanoparticles for orthopaedic applications. J. Compos. Mater. 2015, 49, 2921–2933. [Google Scholar] [CrossRef]
- Kodaira, A.; Nonami, T. Crystal structure and formation mechanism of spherical porous hydroxyapatite synthesised in simulated body fluid. Mater. Technol. 2019, 34, 185–191. [Google Scholar] [CrossRef]
- Ferraris, S.; Yamaguchi, S.; Barbani, N.; Cazzola, M.; Cristallini, C.; Miola, M.; Vernè, E.; Spriano, S. Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation. Acta Biomater. 2020, 102, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Pazarceviren, A.E.; Tezcaner, A.; Evis, Z. Historical Development of Simulated Body Fluids Used in Biomedical Applications: A Review. Microchem. J. 2020, 155, 104713. [Google Scholar] [CrossRef]
- Barthes, J.; Cazzola, M.; Muller, C.; Dollinger, C.; Debry, C.; Ferraris, S.; Spriano, S.; Vrana, N.E. Controlling porous titanium/soft tissue interactions with an innovative surface chemical treatment: Responses of macrophages and fibroblasts. Mater. Sci. Eng. C 2020, 112, 110845. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Yamaguchi, S. Simulated body fluid and the novel bioactive materials derived from it. J. Biomed. Mater. Res. 2019, 107, 968–977. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, R.; Gao, H.; Xu, W.; Xiao, G.; Chen, C.; Lu, Y. A high bioactive alkali-treated titanium surface induced by induction heat treatment. Surf. Coat. Technol. 2020, 385, 125362. [Google Scholar] [CrossRef]
- Rau, J.V.; Fosca, M.; Cacciotti, I.; Laureti, S.; Bianco, A.; Teghil, R. Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films 2013, 543, 167–170. [Google Scholar] [CrossRef]
- Taha, M.A.; Youness, R.A.; Ibrahim, M. Biocompatibility, physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposites for biomedical applications. Ceram. Int. 2020, 46, 23599–23610. [Google Scholar] [CrossRef]
- Teng, H.-P.; Lin, H.-Y.; Huang, Y.-H.; Lu, F.-H. Formation of strontium-substituted hydroxyapatite coatings on bulk Ti and TiN-coated substrates by plasma electrolytic oxidation. Surf. Coat. Technol. 2018, 350, 1112–1119. [Google Scholar] [CrossRef]
- Iqbal, H.; Ali, M.; Zeeshan, R.; Mutahir, Z.; Iqbal, F.; Nawaz, M.A.H.; Shahzadi, L.; Chaudhry, A.A.; Yar, M.; Luan, S.; et al. Chitosan/Hydroxyapatite (HA)/Hydroxypropylmethyl Cellulose (HPMC) Spongy Scaffolds-Synthesis and Evaluation as Potential Alveolar Bone Substitutes. Colloids Surf. B Biointerfaces 2017, 160, 553–563. [Google Scholar] [CrossRef]
- Gherlone, E.F.; Capparé, P.; Tecco, S.; Polizzi, E.; Pantaleo, G.; Gastaldi, G.; Grusovin, M.G. Implant Prosthetic Rehabilitation in Controlled HIV-Positive Patients: A Prospective Longitudinal Study with 1-Year Follow-Up: Implants in HIV Patients. Clin. Implant. Dent. Relat. Res. 2016, 18, 725–734. [Google Scholar] [CrossRef]
- Leena, M.; Rana, D.; Webster, T.J.; Ramalingam, M. Accelerated synthesis of biomimetic nano hydroxyapatite using simulated body fluid. Mater. Chem. Phys. 2016, 180, 166–172. [Google Scholar] [CrossRef]
Ion | SBF | Blood Plasma |
---|---|---|
Na+ | 142.0 | 142.0 |
K+ | 5.0 | 5.0 |
Mg2+ | 1.5 | 1.5 |
Ca2+ | 2.5 | 2.5 |
Cl− | 148.9 | 103.0 |
HCO3− | 4.2 | 27.0 |
HPO42− | 1.0 | 1.0 |
SO42− | 0.5 | 0.5 |
Order | Reagent | Amount |
---|---|---|
1 | NaCl | 12.000 g |
2 | NaHCO3 | 0.525 g |
3 | KCl | 0.336 g |
4 | K2HPO4∙H2O | 0.342 g |
5 | MgCl2 | 0.214 g |
6 | 1 M HCl | 61.950 mL |
7 | CaCl2∙2H2O | 0.552 g |
8 | Na2SO4 | 0.107 g |
9 | (CH2OH)3CNH2 | 9.086 g |
Coating | Atomic % | Ca/P Ratio | ||
---|---|---|---|---|
O | P | Ca | Ca/P | |
Control (Ti) | 57.12 | 14.71 | 28.17 | 1.92 |
NaOH | 55.78 | 15.73 | 28.49 | 1.81 |
QTiN | 55.19 | 15.30 | 28.12 | 1.84 |
SiO2 | 55.12 | 15.70 | 29.18 | 1.86 |
TiN | 57.69 | 14.96 | 27.36 | 1.83 |
Coating Tested | Disc Surface Area (mm2) | HA Mass (mg) | HA Thickness (µm) |
---|---|---|---|
Control (Ti) | 171.90 | 2.72 | 5.04 |
NaOH | 159.05 | 3.67 | 7.20 |
QTiN | 101.66 | 2.18 | 6.78 |
SiO2 | 152.07 | 2.02 | 4.18 |
TiN | 143.50 | 2.00 | 4.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aviles, T.; Hsu, S.-M.; Clark, A.; Ren, F.; Fares, C.; Carey, P.H., IV; Esquivel-Upshaw, J.F. Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid. Materials 2020, 13, 5593. https://doi.org/10.3390/ma13245593
Aviles T, Hsu S-M, Clark A, Ren F, Fares C, Carey PH IV, Esquivel-Upshaw JF. Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid. Materials. 2020; 13(24):5593. https://doi.org/10.3390/ma13245593
Chicago/Turabian StyleAviles, Tatiana, Shu-Min Hsu, Arthur Clark, Fan Ren, Chaker Fares, Patrick H. Carey, IV, and Josephine F. Esquivel-Upshaw. 2020. "Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid" Materials 13, no. 24: 5593. https://doi.org/10.3390/ma13245593
APA StyleAviles, T., Hsu, S. -M., Clark, A., Ren, F., Fares, C., Carey, P. H., IV, & Esquivel-Upshaw, J. F. (2020). Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid. Materials, 13(24), 5593. https://doi.org/10.3390/ma13245593