Impact of Carbon Foam Cell Sizes on the Microstructure and Properties of Pressure Infiltrated Magnesium Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Properties
3.2.1. Compressive Strength Test
3.2.2. Three-Point Bending Tests
4. Conclusions
- During applied pressure infiltration, the lowest open porosity of a composite was obtained from Cof45ppi, regardless of the magnesium-based matrix composition;
- Changes in matrix microstructure and properties were observed and revealed that as the cell size decreased, the magnesium grain size decreased and the microhardness increased. That phenomenon was caused by metal crystallization in carbon foam cells and cannot be overlooked during theoretical calculations and estimation of composite mechanical, thermal and electric properties. Those observations will need to be considered with well-known issues such as the properties of both the interface and carbon materials;
- The influence of cell size on compression strength was revealed; it increased as the cell size decreased, but that strengthening depended on the applied magnesium matrix composition. For pure composite with a Mg matrix, that value was always higher than the reference metal, for AZ31 when Cof45ppi and Cof100ppi, and for RZ5 when Cof45ppi were applied;
- An increase of bending strength as the cell size decreased was noticed during three-point bending tests and was always lower than the matrix reference materials;
- The angle of stress vs. displacement curves in both tests was higher for Cof–Mg composites than reference matrix materials and showed that stiffness increased due to the carbon foam application;
- The best strengthening effect was obtained for the pure magnesium matrix, but using magnesium alloys ensured higher composite strength that pointed to the crucial role of the matrix material on mechanical properties when the foam volume fraction was ~3%;
- During composite decohesion, in glassy carbon foams, effects occurred, including the initiation and propagation of cracks as well as carbon powder cluster formation; however, those processes were more intense when pure Mg was applied as the matrix material. For AZ31 and RZ5 matrices, crack propagation occurred primarily along the foam–metal interface; at the fracture surface, the surfaces of both delaminated components featured new phases, formed earlier or accumulated during composite processing;
- At the fractured surfaces of the metal matrix, shear bands were observed and did not depend on foam cell size. One exception was the fracture of the Cof–RZ5 composite after bending, where intergranular crack propagation occurred, and single metal grains were observed.
Author Contributions
Funding
Conflicts of Interest
References
- Hekner, B.; Myalski, J.; Pawlik, T.; Michalik, D.; Kelepir, O.E. Aluminum-ceramic composite materials reinforced with nanoparticles prepared via powder metallurgy method. Compos. Theory Pract. 2013, 13, 203–207. [Google Scholar]
- Shimizu, Y.; Miki, S.; Soga, T.; Itoh, I.; Todoroki, H.; Hosono, T.; Sakaki, K.; Hayashi, T.; Kim, Y.A.; Endo, M.; et al. Multi-walled carbon nanotube-reinforced magnesium alloy composites. Scr. Mater. 2008, 58, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Olszówka-Myalska, A.; McDonald, S.A.; Withers, P.J.; Myalska, H.; Moskal, G. Microstructure of In Situ Mg Metal Matrix Composites Based on Silica Nanoparticles. Solid State Phenom. 2012, 191, 189–198. [Google Scholar] [CrossRef]
- Olszówka-Myalska, A.; Wrześniowski, P.; Myalska, H.; Godzierz, M.; Kuc, D. Impact of the Morphology of Micro- and Nanosized Powder Mixtures on the Microstructure of Mg-Mg2Si-CNT Composite Sinters. Materials 2019, 12, 3242. [Google Scholar] [CrossRef] [Green Version]
- Breslin, M.; Ringnalda, J.; Xu, L.; Fuller, M.; Seeger, J.; Daehn, G.; Otani, T.; Fraser, H. Processing, microstructure, and properties of co-continuous alumina-aluminum composites. Mater. Sci. Eng. A 1995, 195, 113–119. [Google Scholar] [CrossRef]
- Skirl, S.; Hoffman, M.; Bowman, K.; Wiederhorn, S.; Rödel, J. Thermal expansion behavior and macrostrain of Al2O3/Al composites with interpenetrating networks. Acta Mater. 1998, 46, 2493–2499. [Google Scholar] [CrossRef]
- Prielipp, H.; Knechtel, M.; Claussen, N.; Streiffer, S.; Müllejans, H.; Rühle, M.; Rödel, J. Strength and fracture toughness of aluminum/alumina composites with interpenetrating networks. Mater. Sci. Eng. A 1995, 197, 19–30. [Google Scholar] [CrossRef]
- Kaczmar, J.W.; Naplocha, K. Wear behavior of composite materials based on 2024 Al-alloy reinforced with δ alumina fiber. J. Achiev. Mater. Manuf. Eng. 2010, 43, 88–93. [Google Scholar]
- Naplocha, K.; Granat, K. Wear performance of aluminium/Al2O3/C hybrid composites. Arch. Mater. Sci. Eng. 2008, 29, 81–88. [Google Scholar]
- Naplocha, K.; Granat, K. Dry sliding wear of Al/Saffil/C hybrid metal matrix composites. Wear 2008, 265, 1734–1740. [Google Scholar] [CrossRef]
- Mattern, A.; Huchler, B.; Staudenecker, D.; Oberacker, R.; Nagel, A.; Hoffmann, M. Preparation of interpenetrating ceramic–metal composites. J. Eur. Ceram. Soc. 2004, 24, 3399–3408. [Google Scholar] [CrossRef]
- Chen, J.; Hao, C.; Zhang, J. Fabrication of 3D-SiC network reinforced aluminum-matrix composites by pressureless infiltration. Mater. Lett. 2006, 60, 2489–2492. [Google Scholar] [CrossRef]
- Li, S.; Xiong, D.; Liu, M.; Bai, S.; Zhao, X. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceram. Int. 2014, 40, 7539–7544. [Google Scholar] [CrossRef]
- Maj, J.; Basista, M.; Węglewski, W.; Bochenek, K.; Strojny-Nędza, A.; Naplocha, K.; Panzner, T.; Tatarková, M.; Fiori, F. Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting. Mater. Sci. Eng. A 2018, 715, 154–162. [Google Scholar] [CrossRef]
- Liu, J.; Binner, J.; Higginson, R. Dry sliding wear behaviour of co-continuous ceramic foam/aluminium alloy interpenetrating composites produced by pressureless infiltration. Wear 2012, 94–104. [Google Scholar] [CrossRef]
- Shouren, W.; Haoran, G.; Jingchun, Z.; Yingzi, W. Interpenetrating Microstructure and Properties of Si3N4/Al–Mg Composites Fabricated by Pressureless Infiltration. Appl. Compos. Mater. 2006, 13, 115–126. [Google Scholar] [CrossRef]
- Potoczek, M.; Śliwa, R. Microstructure and Physical Properties of AlMg/Al2O3 Interpenetrating Composites Fabricated by Metal Infiltration into Ceramic Foams. Arch. Met. Mater. 2011, 56, 1265–1269. [Google Scholar] [CrossRef] [Green Version]
- Vaucher, S.; Kuebler, J.; Beffort, O.; Biasetto, L.; Zordan, F.; Colombo, P. Ceramic foam-reinforced Al-based micro-composites. Compos. Sci. Technol. 2008, 68, 3202–3207. [Google Scholar] [CrossRef]
- Cree, D.; Pugh, M. Production and characterization of a three-dimensional cellular metal-filled ceramic composite. J. Mater. Process. Technol. 2010, 210, 1905–1917. [Google Scholar] [CrossRef] [Green Version]
- Cree, D.; Pugh, M. Dry wear and friction properties of an A356/SiC foam interpenetrating phase composite. Wear 2011, 272, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Marchi, C.S.; Kouzeli, M.; Rao, R.; Lewis, J.; Dunand, D. Alumina–aluminum interpenetrating-phase composites with three-dimensional periodic architecture. Scr. Mater. 2003, 49, 861–866. [Google Scholar] [CrossRef]
- Posmyk, A.; Myalski, J.; Hekner, B. Glassy Carbon Coating Deposited on Hybrid Structure of Composite Materials. Arch. Met. Mater. 2016, 61, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Steinacher, M.; Jenko, D.; Mrvar, P.; Žužek, B.; Zupanič, F. Manufacturing and Properties of a Magnesium Interpenetrating Phase Composite. Stroj. Vestn. J. Mech. Eng. 2016, 62, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Myalski, J.; Posmyk, A.; Hekner, B. The influence of a skeletal carbon structure on the tribological properties of composite with an aluminium matrix. Tribologia 2015, 263, 89–98. [Google Scholar]
- Myalski, J.; Posmyk, A.; Hekner, B.; Godzierz, M. The influence of glassy carbon and its forms on tribological properties of aluminium matrix composites. Tribologia 2019, 285, 79–87. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, Z.; Ly, J.; Xu, G.; Zhou, S.; Tang, W.; Wu, Y. 3D-SiC/Al-Si-Mg Interface design in interpenetrating composite fabricated by pressureless infiltration. Ceram. Int. 2018, 44, 11956–11965. [Google Scholar] [CrossRef]
- Wu, S.; Wang, S.; Wen, D.; Wang, G.; Wang, Y. Microstructure and Mechanical Properties of Magnesium Matrix Composites Interpenetrated by Different Reinforcement. Appl. Sci. 2018, 8, 2012. [Google Scholar] [CrossRef] [Green Version]
- Gawdzińska, K.; Chybowski, L.; Nabiałek, M.; Szymański, P. A Study of Metal-Ceramic Composite Foams Combustibility. Acta Phys. Pol. A 2019, 135, 304–307. [Google Scholar] [CrossRef]
- Gawdzińska, K.; Chybowski, L.; Przetakiewicz, W. Study of Thermal Properties of Cast Metal- Ceramic Composite Foams. Arch. Foundry Eng. 2017, 17, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Broxtermann, S.; Su, M.; Hao, H.; Fiedler, T. Comparative study of stir casting and infiltration casting of expanded glass-aluminium syntactic foams. J. Alloys Compd. 2020, 845, 155415. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Jia, G.; Ke, G.; Zhang, J.; Yuan, G. Effect of grain size on the mechanical properties of Mg foams. J. Mater. Sci. Technol. 2020, 58, 46–54. [Google Scholar] [CrossRef]
- Godzierz, M.; Olszówka-Myalska, A. Influence of casting procedure on wear of magnesium matrix composites reinforced with carbon open-celled foam. Compos. Theory Pract. 2019, 19, 64–70. [Google Scholar]
- Olszówka-Myalska, A.; Godzierz, M.; Myalski, J.; Wrześniowski, P.; Myalska, O. Magnesium Matrix Composite with Open-Celled Glassy Carbon Foam Obtained Using the Infiltration Method. Metals 2019, 9, 622. [Google Scholar] [CrossRef] [Green Version]
- Myalski, J.; Olszówka-Myalska, A.; Hekner, B. Method for Obtaining Open-Cell Carbide Foams. Patent P.234409, 20 March 2019. [Google Scholar]
- Myalski, J.; Hekner, B. Glassy carbon foam as a skeleton reinforcement in polymer composites. Compos. Theory Pract. 2017, 17, 41–46. [Google Scholar]
- Körner, C.; Schäff, W.; Ottmüller, M.; Singer, R.F. Carbon long fiber reinforced magnesium alloys. Adv. Eng. Mater. 2000, 6, 327–337. [Google Scholar] [CrossRef]
- Ataia, S.; Alsaleh, N.A.; Seleman, M.M.E.-S. Strength and Wear Behavior of Mg Alloy AE42 Reinforced with Carbon Short Fibers. Acta Met. Sin. (Engl. Lett.) 2019, 32, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.L.; Li, K.; Gong, J.; Shi, N.L.; Elangovan, E.; Sun, C. Micro-structural and tensile strength analyses on the magnesium matrix composites reinforced with coated carbon fiber. J. Mater. Sci. 2009, 44, 4124–4131. [Google Scholar] [CrossRef]
- Hufenbach, W.; Andrich, M.; Langkamp, A.; Czulak, A. Fabrication technology and material characterization of carbon fibre reinforced magnesium. J. Mater. Process. Technol. 2006, 175, 218–224. [Google Scholar] [CrossRef]
- Olszówka-Myalska, A.; Myalski, J.; Chrapoński, J. Influence of casting procedure on microstructure and properties of Mg alloy–glassy carbon particle composite. Int. J. Mater. Res. 2015, 106, 741–749. [Google Scholar] [CrossRef]
- Fukuda, H.; Kondoh, K.; Umeda, J.; Fugetsu, B. Interfacial analysis between Mg matrix and carbon nanotubes in Mg–6wt.% Al alloy matrix composites reinforced with carbon nanotubes. Compos. Sci. Technol. 2011, 71, 705–709. [Google Scholar] [CrossRef]
- Nai, M.H.; Wei, J.; Gupta, M. Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites. Mater. Des. 2014, 60, 490–495. [Google Scholar] [CrossRef]
- ASTM E9—Standard Test Method for the Compression Testing of Metallic Materials at Room Temperature; ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C1161—Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature; ASTM International: West Conshohocken, PA, USA, 2019.
- Godzierz, M.; Olszówka-Myalska, A.; Sobczak, N.; Nowak, R.; Wrześniowski, P. Bonding effect of liquid magnesium with open-celled carbon foam in interpenetrating phase composite. J. Magnes. Alloys 2020. [Google Scholar] [CrossRef]
Alloy | Chemical Composition, wt % | ||||
---|---|---|---|---|---|
Al | Zn | RE | Zr | Mg | |
AZ31 | 2.5–3.5 | 0.7–1.3 | - | - | bal. |
RZ5 | - | 3.5–5.0 | 0.8–1.7 | 0.4–1.0 | bal. |
Material | Open Porosity,% | Matrix Microhardness, HV0.2 | Microhardness Change in Comparison with Reference Sample,% |
---|---|---|---|
reference pure Mg | 0.00 ± 0.00 | 31.19 ± 2.21 | - |
Cof20ppi–Mg composite | 2.52 ± 0.11 | 44.82 ± 3.84 | +44% |
Cof45ppi–Mg composite | 0.46 ± 0.01 | 51.81 ± 0.88 | +66% |
Cof100ppi–Mg composite | 1.40 ± 0.05 | 58.76 ± 1.96 | +88% |
reference pure AZ31 alloy | 0.00 ± 0.00 | 50.31 ± 3.12 | - |
Cof20ppi–AZ31 composite | 3.81 ± 0.01 | 56.03 ± 3.22 | +11% |
Cof45ppi–AZ31 composite | 1.63 ± 0.02 | 61.53 ± 2.34 | +22% |
Cof100ppi–AZ31 composite | 2.45 ± 0.04 | 69.79 ± 4.08 | +39% |
reference pure RZ5 alloy | 0.00 ± 0.00 | 69.42 ± 6.66 | - |
Cof20ppi–RZ5 composite | 3.96 ± 0.08 | 55.12 ± 6.01 | −21% |
Cof45ppi–RZ5 composite | 1.33 ± 0.01 | 61.72 ± 6.72 | −12% |
Cof100ppi–RZ5 composite | 8.75 ± 0.04 | 57.02 ± 4.87 | −19% |
Magnesium-Based Material | Mean Grain Area, mm2 |
---|---|
pure Mg | 0.704 ± 0.698 |
Cof10ppi–Mg composite | 0.324 ± 0.309 |
Cof20ppi–Mg composite | 0.142 ± 0.088 |
Cof45ppi–Mg composite | 0.109 ± 0.081 |
Cof100ppi–Mg composite | 0.012 ± 0.009 |
Material | Compressive Strength, Rs, MPa | Change in Comparison with Matrix,% | Three-Point Bending Strength, Rg, MPa | Change in Comparison with Matrix,% |
---|---|---|---|---|
reference pure Mg | 86.1 ± 10.2 | - | 182.1 ± 5.1 | - |
Cof20ppi–Mg composite | 91.4 ± 1.9 | +6% | 118.1 ± 3.2 | −35% |
Cof45ppi–Mg composite | 121.5 ± 7.4 | +41% | 124.4 ± 2.8 | −32% |
Cof100ppi–Mg composite | 199.3 ± 14.2 | +131% | 129.1 ± 4.9 | −29% |
reference pure AZ31 alloy | 189.2 ± 13.0 | - | 309.0 ± 7.5 | - |
Cof20ppi–AZ31 composite | 178.8 ± 14.8 | −5% | 187.8 ± 4.3 | −40% |
Cof45ppi–AZ31 composite | 203.0 ± 18.9 | +7% | 220.4 ± 6.2 | −29% |
Cof100ppi–AZ31 composite | 260.8 ± 19.5 | +38% | 249.2 ± 7.3 | −19% |
reference pure RZ5 alloy | 290.6 ± 6.3 | 351.7 ± 8.6 | ||
Cof20ppi–RZ5 composite | 266.5 ± 10.5 | −8% | 222.5 ± 8.5 | −37% |
Cof45ppi–RZ5 composite | 328.1 ± 8.1 | +13% | 259.6 ± 8.1 | −26% |
Cof100ppi–RZ5 composite | * | * | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olszówka-Myalska, A.; Godzierz, M.; Myalski, J. Impact of Carbon Foam Cell Sizes on the Microstructure and Properties of Pressure Infiltrated Magnesium Matrix Composites. Materials 2020, 13, 5619. https://doi.org/10.3390/ma13245619
Olszówka-Myalska A, Godzierz M, Myalski J. Impact of Carbon Foam Cell Sizes on the Microstructure and Properties of Pressure Infiltrated Magnesium Matrix Composites. Materials. 2020; 13(24):5619. https://doi.org/10.3390/ma13245619
Chicago/Turabian StyleOlszówka-Myalska, Anita, Marcin Godzierz, and Jerzy Myalski. 2020. "Impact of Carbon Foam Cell Sizes on the Microstructure and Properties of Pressure Infiltrated Magnesium Matrix Composites" Materials 13, no. 24: 5619. https://doi.org/10.3390/ma13245619
APA StyleOlszówka-Myalska, A., Godzierz, M., & Myalski, J. (2020). Impact of Carbon Foam Cell Sizes on the Microstructure and Properties of Pressure Infiltrated Magnesium Matrix Composites. Materials, 13(24), 5619. https://doi.org/10.3390/ma13245619