Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.3. Characterization of Foam Properties
- -
- generation of monoharmonic signals transmitted through the power amplifier to the loudspeaker,
- -
- narrowband filtering of the signal recorded by the microphone probe to remove interference and noise (Butterworth filters; filter order n = 10); the center frequency of the filter was consistent with the frequency of the generated monoharmonic signal,
- -
- precise tracking of changes in pressure when moving the microphone probe and automatic detection and storage of maximum and minimum pressure values; precise measurement of the minimum local pressure was crucial especially in the frequency bands where the absorption coefficient had low values (below 0.1),
- -
- graphical user interface (GUI).
3. Results
3.1. Cellular Structure and Thermal Conductivity
3.2. Acoustic Properties of PUR Foams
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gama, N.; Silva, R.; Carvalho, A.P.O.; Ferreira, A.; Barros-Timmons, A. Sound absorption properties of polyurethane foams derived from crude glycerol and liquefied coffee grounds polyol. Polym. Test. 2017, 62, 13–22. [Google Scholar] [CrossRef]
- Członka, S.; Bertino, M.F.; Strzelec, K. Rigid polyurethane foams reinforced with industrial potato protein. Polym. Test. 2018, 68, 135–145. [Google Scholar] [CrossRef]
- Członka, S.; Bertino, M.F.; Strzelec, K.; Strąkowska, A.; Masłowski, M. Rigid polyurethane foams reinforced with solid waste generated in leather industry. Polym. Test. 2018, 69, 225–237. [Google Scholar] [CrossRef]
- Payne, J.; McKeown, P.; Jones, M.D. A circular economy approach to plastic waste. Polym. Degrad. Stab. 2019, 165, 170–181. [Google Scholar] [CrossRef]
- Orjuela, A.; Clark, J. Green chemicals from used cooking oils: Trends, challenges, and opportunities. Curr. Opin. Green Sustain. Chem. 2020, 26, 100369. [Google Scholar] [CrossRef]
- Panadare, D.C.; Rathod, V.K. Applications of Waste Cooking Oil Other Than Biodiesel: A Review. Iran. J. Chem. Eng. 2015, 12, 55–76. [Google Scholar]
- Zheng, T.; Wu, Z.; Xie, Q.; Fang, J.; Hu, Y.; Lu, M.; Xia, F.; Nie, Y.; Ji, J. Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate. J. Clean. Prod. 2018, 186, 1021–1030. [Google Scholar] [CrossRef]
- Kurańska, M.; Banaś, J.; Polaczek, K.; Banaś, M.; Prociak, A.; Kuc, J.; Uram, K.; Lubera, T. Evaluation of application potential of used cooking oils in the synthesis of polyol compounds. J. Environ. Chem. Eng. 2019, 7, 103506. [Google Scholar] [CrossRef]
- Kurańska, M.; Benes, H.; Polaczek, K.; Trhlikova, O.; Walterova, Z.; Prociak, A. Effect of homogeneous catalysts on ring opening reactions of epoxidized cooking oils. J. Clean. Prod. 2019, 230, 162–169. [Google Scholar] [CrossRef]
- Kurańska, M.; Leszczyńska, M.; Kubacka, J.; Prociak, A.; Ryszkowska, J. Effects of Modified Used Cooking Oil on Structure and Properties of Closed-Cell Polyurethane foams. J. Polym. Environ. 2020, 28, 2780–2788. [Google Scholar] [CrossRef]
- Kuranska, M.; Polaczek, K.; Auguścik-Królikowska, M.; Prociak, A.; Ryszkowska, J. Open-cell polyurethane foams based on modified used cooking oil. Polimery 2020, 65, 216–225. [Google Scholar] [CrossRef]
- Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Hejna, A.; Haponiuk, J.T. Rigid polyurethane foams from a polyglycerol-based polyol. Eur. Polym. J. 2014, 57, 143–150. [Google Scholar] [CrossRef]
- Hejna, A.; Kirpluks, M.; Kosmela, P.; Cabulis, U.; Haponiuk, J.; Piszczyk, Ł. The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind. Crops Prod. 2017, 95, 113–125. [Google Scholar] [CrossRef]
- Kurańska, M.; Polaczek, K.; Auguścik-Królikowska, M.; Prociak, A.; Ryszkowska, J. Open-cell rigid polyurethane bio-foams based on modified used cooking oil. Polymer 2020, 190, 122164. [Google Scholar] [CrossRef]
- Dziechciowski, Z.; Czerwiński, A.; Kuciel, S.; Prociak, T. Testing of Mechanical and Acoustical Parameters of Polyurethane Materials with Desirable Properties. Czas. Tech. Mech. 2015, 4. [Google Scholar] [CrossRef]
- Kurańska, M.; Beneš, H.; Prociak, A.; Trhlíková, O.; Walterová, Z.; Stochlińska, W. Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts. J. Clean. Prod. 2019, 236. [Google Scholar] [CrossRef]
- ISO 4590:2016 Rigid Cellular Plastics—Determination of the Volume Percentage of Open Cells and of Closed Cells; International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 845:2006 Cellular Plastics and Rubbers—Determination of Apparent Density; International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 8301:1991 Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Heat Flow Meter Apparatus; International Organization for Standardization: Geneva, Switzerland, 1991.
- PN-EN 826:2013-07 Thermal Insulating Products for Building Applications—Determination of Compression Behavior; Polish Committee for Standardization: Warszawa, Poland, 2013.
- ISO. ISO 10534-1:1996 Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 1: Method Using Standing Wave Ratio; International Organization for Standardization: Geneva, Switzerland, 1996. [Google Scholar]
- D’Antonio, P. Acoustic Absorbers and Diffusers, Theory, Design and Application, 2nd ed.; Taylor & Francis: Abingdon, UK, 2009. [Google Scholar]
- Brüel, P.V. The standing wave apparatus. In Brüel & Kjær Technical Review; No 1, 1955, 2–20; Brüel & Kjær: Nærum, Denmark, 1955. [Google Scholar]
- Standing Wave Apparatus Type 4002, Instruction Manual; Brüel & Kjær: Nærum, Denmark, 1979.
- Zhu, W.; Chen, S.; Wang, Y.; Zhu, T.; Jiang, Y. Sound absorption behavior of polyurethane foam composites with different ethylene propylene diene monomer particles. Arch. Acoust. 2018, 43, 403–411. [Google Scholar] [CrossRef]
- Członka, S.; Strakowska, A. Rigid polyurethane foams based on bio-polyol and additionally reinforced with silanized and acetylated walnut shells for the synthesis of environmentally friendly insulating materials. Materials 2020, 13, 3245. [Google Scholar] [CrossRef]
- Strakowska, A.; Członka, S.; Konca, P.; Strzelec, K. New flame retardant systems based on expanded graphite for rigid polyurethane foams. Appl. Sci. 2020, 10, 5817. [Google Scholar] [CrossRef]
- Narine, S.S.; Kong, X.; Bouzidi, L.; Sporns, P. Physical properties of polyurethanes produced from polyols from seed oils: II. Foams. JAOCS J. Am. Oil Chem. Soc. 2007, 84, 65–72. [Google Scholar] [CrossRef]
- Gosz, K.; Haponiuk, J.; Piszczyk, Ł. The Influence of Substitution of a Phosphorus-Containing Polyol with the Bio-polyol on the Properties of Bio-based PUR/PIR Foams. J. Polym. Environ. 2018, 26, 3877–3888. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, M.C.; O’Toole, B.; Jackovich, D. Cell morphology and mechanical properties of rigid polyurethane foam. J. Cell. Plast. 2005, 41, 267–285. [Google Scholar] [CrossRef]
- Hyuk Park, J.; Suh Minn, K.; Rae Lee, H.; Hyun Yang, S.; Bin Yu, C.; Yeol Pak, S.; Sung Oh, C.; Seok Song, Y.; June Kang, Y.; Ryoun Youn, J. Cell openness manipulation of low density polyurethane foam for efficient sound absorption. J. Sound Vib. 2017, 406, 224–236. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Hu, Z.; Zhu, F.; Huang, Y. Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity. Mater. Des. 2012, 41, 319–325. [Google Scholar] [CrossRef]
- Dossi, M.; Brennan, M.; Moesen, M.; Vandenbroeck, J. An Inverse Method to Determine Acoustic Parameters of Polyurethane Foams. In Proceedings of the Noise Conrol for a Better Environment, Madrid, Spain, 16–19 June 2019. [Google Scholar]
- Zhang, H. (Ed.) Heat-insulating Materials and Sound-absorbing Materials. In Building Materials in Civil Engineering; Elsevier: Amsterdam, The Netherlands, 2011; pp. 304–423. [Google Scholar]
- Lind-Nordgren, E.; Göransson, P. Optimising open porous foam for acoustical and vibrational performance. J. Sound Vib. 2010, 329, 753–767. [Google Scholar] [CrossRef]
Component, g | OPU_0 | OPU_20 | OPU_40 | OPU_60 | OPU_80 | OPU_100 |
---|---|---|---|---|---|---|
Rokopol551 | 100 | 80 | 60 | 40 | 20 | 0 |
Bio-polyol | 0 | 20 | 40 | 60 | 80 | 100 |
Kosmos 19 | 1 | |||||
Polycat 37 | 2 | |||||
Tegostab 8870 | 1.5 | |||||
Ortegol500 | 0.5 | |||||
Water | 15 | |||||
Ongronat 2100 | 330.5 | 321.7 | 312.9 | 304.1 | 295.3 | 286.6 |
Sample | d, kg/m3 | λ 0 °C, mW/m·K | λ 10 °C, mW/m·K | λ 20 °C, mW/m·K |
---|---|---|---|---|
OPU_0 | 18.7 ± 1.34 | 60.32 ± 0.54 | 64.27 ± 0.49 | 69.98 ± 0.50 |
OPU_20 | 16.6 ± 0.27 | 43.00 ± 0.33 | 45.55 ± 0.37 | 48.47 ± 0.30 |
OPU_40 | 18.8 ± 0.10 | 46.04 ± 0.15 | 47.66 ± 0.28 | 51.79 ± 0.25 |
OPU_60 | 20.7 ± 1.70 | 42.15 ± 0.16 | 44.68 ± 0.45 | 47.24 ± 0.27 |
OPU_80 | 30.8 ± 3.18 | 38.35 ± 0.63 | 39.65 ± 0.40 | 42.35 ± 0.67 |
OPU_100 | 28.4 ± 0.84 | 38.08 ± 0.64 | 39.33 ± 0.13 | 42.01 ± 0.41 |
FR_OPU_0 | 19.6 ± 1.20 | 51.16 ± 0.87 | 54.65 ± 0.96 | 58.14 ± 0.01 |
FR_OPU_20 | 18.5 ± 0.28 | 39.09 ± 0.18 | 41.23 ± 0.04 | 43.35 ± 0.01 |
FR_OPU_40 | 18.8 ± 0.13 | 39.05 ± 0.69 | 40.95 ± 0.81 | 43.07 ± 0.87 |
FR_OPU_60 | 19.1 ± 0.36 | 38.21 ± 0.06 | 40.47 ± 0.28 | 42.38 ± 0.21 |
FR_OPU_80 | 20.8 ± 1.16 | 37.60 ± 0.28 | 38.95 ± 1.00 | 40.75 ± 0.94 |
FR_OPU_100 | 20.1 ± 1.41 | 37.13 ± 0.50 | 38.94 ± 0.71 | 40.89 ± 0.28 |
Sample | Equivalent Diameter, µm | Content of Closed Cells, % | |
---|---|---|---|
Cross-Section Area Parallel to Foaming Direction | Cross-Section Area Perpendicular to Foaming Direction | ||
OPU_0 | 2936 ±1 53 | 2673 ± 296 | <5 |
OPU_20 | 1508 ± 202 | 1929 ± 416 | <5 |
OPU_40 | 2277 ± 260 | 1713 ± 392 | <5 |
OPU_60 | 1766 ± 364 | 1734 ± 19 | <5 |
OPU_80 | 995 ± 162 | 920 ± 165 | <5 |
OPU_100 | 630 ± 131 | 581 ± 143 | <5 |
FR_OPU_0 | 2512 ± 361 | 2381 ± 354 | <5 |
FR_OPU_20 | 1126 ± 221 | 1037 ± 205 | <5 |
FR_OPU_40 | 1110 ± 138 | 813 ± 200 | <5 |
FR_OPU_60 | 932 ± 165 | 803 ± 159 | <5 |
FR_OPU_80 | 925 ± 213 | 789 ± 133 | <5 |
FR_OPU_100 | 713 ± 140 | 538 ± 122 | <5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurańska, M.; Barczewski, R.; Barczewski, M.; Prociak, A.; Polaczek, K. Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil. Materials 2020, 13, 5673. https://doi.org/10.3390/ma13245673
Kurańska M, Barczewski R, Barczewski M, Prociak A, Polaczek K. Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil. Materials. 2020; 13(24):5673. https://doi.org/10.3390/ma13245673
Chicago/Turabian StyleKurańska, Maria, Roman Barczewski, Mateusz Barczewski, Aleksander Prociak, and Krzysztof Polaczek. 2020. "Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil" Materials 13, no. 24: 5673. https://doi.org/10.3390/ma13245673
APA StyleKurańska, M., Barczewski, R., Barczewski, M., Prociak, A., & Polaczek, K. (2020). Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil. Materials, 13(24), 5673. https://doi.org/10.3390/ma13245673