Diffusion Mechanism of Cinnamon Essential Oils Release from Calcium Alginate Based Controlled Release Films in Contact with Food Simulating Solvent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Films
2.3. Scanning Electron Microscopy (SEM)
2.4. Film Thickness and Mechanical Properties of Films
2.5. Swelling Properties
2.6. Release Studies
2.7. Statistical Analysis
3. Results and Discussion
3.1. Two-Layer Structure of Film
3.2. Film Thickness and Mechanical Properties
3.3. Influence of Glycol and Ethanol on D
3.4. Influence of Water on D
3.5. Influence of Aqueous Ethanol on D
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benbettaïeb, N.; Karbowiak, T.; Frédéric, D. Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Crit. Rev. Food Sci. Nutr. 2019, 59, 1137–1153. [Google Scholar] [CrossRef]
- Wu, Y.M.; Wang, Z.W.; Hu, C.Y.; Nerin, C. Influence of factors on release of antimicrobials from antimicrobial packaging materials. Crit. Rev. Food Sci. Nutr. 2016, 58, 1108–1121. [Google Scholar] [CrossRef]
- Wang, Y.; Yam, K.L. Inhibitory effect of thymol via different modes of delivery on growth of, Escherichia coli, DH5α. Food Packag. Shelf Life 2018, 16, 92–96. [Google Scholar] [CrossRef]
- Feiz, S.; Navarchian, A.H. Poly(vinyl alcohol) hydrogel/chitosan-modified clay nanocomposites for wound dressing application and controlled drug release. Macromol. Res. 2019, 27, 290–300. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Huang, C. Structural changes and triacetin migration of starch acetate film contacting with distilled water as food simulant. Carbohydr. Polym. 2014, 104, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Villalba-Rodriguez, A.M.; Parra-Saldivar, R.; Ahmed, I.; Karthik, K.; Malik, Y.S.; Dhama, K.; Iqbal, H.M.; Villalba-Rodríguez, R.P.-S.A.M. Bio-inspired biomaterials and their drug delivery perspectives—A review. Curr. Drug Metab. 2017, 18, 893–904. [Google Scholar] [CrossRef]
- Fritz, L.; Hofmann, D. Molecular dynamics simulations of the transport of water-ethanol mixtures through polydimethylsiloxane membranes. Polymer 1997, 38, 1035–1045. [Google Scholar] [CrossRef]
- Paul, D.; Fritz, L.; Ulbrich, J. Molecular modelling of amorphous membrane polymers. Polymer 1997, 38, 6145–6155. [Google Scholar]
- Takeuchi, H.; Roe, R.J. Molecular dynamics simulation of local chain motion in bulk amorphous polymers. I. Dynamics above the glass transition. J. Chem. Phys. 1991, 94, 7446–7457. [Google Scholar] [CrossRef]
- Vrentas, J.S.; Vrentas, C.M. Determination of free-volume parameters for solvent self-diffusion in polymer-solvent systems. Macromolecules 2020, 28, 4740–4741. [Google Scholar] [CrossRef]
- Zhu, Y.; Welle, F.; Vitrac, O. A blob model to parameterize polymer hole free volumes and solute diffusion. Soft Matter. 2019, 15, 8912–8932. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Li, B.; Lin, Q.B.; Hu, C.-Y. Two-phase molecular dynamics model to simulate the migration of additives from polypropylene material to food. Int. J. Heat Mass Transfer. 2018, 122, 694–706. [Google Scholar] [CrossRef]
- Chen, X.; Lu, L.X.; Qiu, X.L.; Tang, Y.L. Controlled release mechanism of complex bio-polymeric emulsifiers made microspheres embedded in sodium alginate based films. Food Control. 2017, 73, 1275–1284. [Google Scholar] [CrossRef]
- Chen, X.; Lu, L.X.; Qiu, X.L.; Tang, Y.L. Blending technique-determined distinct structured sodium alginate-based films for cinnamon essential oils controlled release. J. Food Process. Eng. 2018, 41, 1–8. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Pytka, M.; Szymanowska, U.; Skrzypek, T.; Łupina, K.; Biendl, M. Release kinetics and antibacterial activity of potassium salts of iso-α-acids loaded into the films based on gelatin, carboxymethyl cellulose and their blends. Food Hydrocolloids 2020, 109. [Google Scholar] [CrossRef]
- Crank, J. The mathematics of diffusion. 2nd Edn. WSEAS Trans. Syst. Control. 1975, 8, 625–626. [Google Scholar]
- Fang, Y.; Al-Assaf, S.; Phillips, G.O.; Nishinari, K.; Funami, T.; Williams, A.P.A.; Li, L. Multiple steps and critical behaviors of the binding of calcium to alginate. J. Phys. Chem. B. 2007, 111, 2456–2462. [Google Scholar] [CrossRef]
- Silva, M.A.D.; Bierhalz, A.C.K.; Kieckbusch, T.G. Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydr. Polym. 2009, 77, 736–742. [Google Scholar] [CrossRef]
- Jost, V.; Kobsik, K.; Schmid, M.; Noller, K. Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohydr. Polym. 2014, 110, 309–319. [Google Scholar] [CrossRef]
- Ziani, K.; Oses, J.; Coma, V.; Maté, J.I. Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT Food Sci. Technol. 2008, 41, 2159–2165. [Google Scholar] [CrossRef]
- Olivas, G.I.; Barbosa-Cánovas, G.V. Alginate-calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT Food Sci. Technol. 2018, 41, 359–366. [Google Scholar] [CrossRef]
- Santana, A.A.; Kieckbusch, T.G. Physical evaluation of biodegradable films of calcium alginate plasticized with polyols. Braz. J. Chem. Eng. 2013, 30, 835–845. [Google Scholar] [CrossRef]
Film Samples | Film Compositions | Anhydrous Composition Contents (g) |
---|---|---|
EGkf | SA + (G0 + CEO) + Gly | 0.6; 0.25; 0.5; 0.3k |
EGAkf | SA + (G0 + A0 + CEO) + Gly | 0.6; 0.225; 0.025; 0.5; 0.3k |
EGCkf | SA + (G0 + C0 + CEO) + Gly | 0.6; 0.225; 0.025; 0.5; 0.3k |
Film Samples | D (cm2/s) | D1 (cm2/s) | D1/D | d1/d | D1/D2 |
---|---|---|---|---|---|
G | 2.000 × 10−9 | 8.064 × 10−9 | 4.032 | 0.75 | 13.13 |
GA | 6.680 × 10−10 | 2.950 × 10−9 | 4.416 | 0.73 | 13.47 |
GC | 4.140 × 10−11 | 1.760 × 10−10 | 4.251 | 0.74 | 13.27 |
Film Samples | Thickness (mm) | (s.d.) | TS/MPa | (s.d.) | E/% | (s.d.) |
---|---|---|---|---|---|---|
EG1 | 0.039 a | 0.003 | 40.82 a | 4.344 | 2.888 a | 0.141 |
EG2 | 0.044 b | 0.001 | 27.44 b | 3.672 | 9.760 a | 5.794 |
EG3 | 0.047 b | 0.002 | 16.73 c | 1.646 | 21.44 b | 5.226 |
EGA1 | 0.042 a | 0.003 | 34.83 a | 3.200 | 15.01 c | 4.487 |
EGA2 | 0.042 a | 0.006 | 26.83 b | 2.103 | 18.05 c | 8.403 |
EGA3 | 0.047 a | 0.008 | 19.43 c | 4.183 | 36.83 d | 8.832 |
EGC1 | 0.046 a | 0.002 | 38.34 a | 3.295 | 12.92 c | 4.225 |
EGC2 | 0.052 bc | 0.001 | 24.34 b | 4.264 | 28.10 b | 3.605 |
EGC3 | 0.057 cd | 0.004 | 15.85 c | 2.284 | 42.54 e | 8.137 |
Film Samples | Thickness (mm) | D (cm2/s) | RMSE |
---|---|---|---|
EG1 | 0.048 | 5.800 × 10−10 a | 0.03248 |
EG2 | 0.053 | 3.433 × 10−9 b | 0.03436 |
EG3 | 0.062 | 1.096 × 10−8 c | 0.09119 |
EG4 | 0.079 | 1.606 × 10−8 d | 0.07104 |
EGA1 | 0.047 | 4.200 × 10−11 e | 0.05190 |
EGA2 | 0.051 | 7.000 × 10−10 a | 0.06900 |
EGA3 | 0.059 | 8.216 × 10−9 f | 0.09958 |
EGA4 | 0.076 | 9.900 × 10−9 g | 0.1029 |
EGC1 | 0.049 | 8.800 × 10−12 h | 0.07831 |
EGC2 | 0.050 | 4.510 × 10−11 e | 0.04025 |
EGC3 | 0.062 | 3.340 × 10−9 b | 0.07512 |
EGC4 | 0.072 | 5.938 × 10−9 i | 0.09671 |
Film Samples | Thickness (mm) | D ((cm2/s) × 10−10) | RMSE |
---|---|---|---|
EG11 | 0.047 | 4.050 a | 0.05661 |
EG21 | 0.049 | 5.100 a | 0.03139 |
EG31 | 0.053 | 6.354 a | 0.04163 |
EGA11 | 0.044 | 4.500 a | 0.01860 |
EGA21 | 0.050 | 5.085 a | 0.02774 |
EGA31 | 0.063 | 8.500 a | 0.04937 |
EGC11 | 0.046 | 2.896 a | 0.06030 |
EGC21 | 0.052 | 4.400 a | 0.04030 |
EGC31 | 0.060 | 9.988 a | 0.04996 |
Film Samples | w | Thickness (mm) | D (cm2/s) | RMSE |
---|---|---|---|---|
EG3 | 0.00 | 0.062 | 1.127 × 10−8 a | 0.08408 |
EG3-0.05 | 0.05 | 0.062 | 1.099 × 10−8 a | 0.08413 |
EG3-0.30 | 0.30 | 0.057 | 3.900 × 10−9 b | 0.07883 |
EG3-0.60 | 0.60 | 0.056 | 2.156 × 10−9 c | 0.04087 |
EG3-0.95 | 0.95 | 0.057 | 1.712 × 10−9 c | 0.09820 |
EG31 | 1.00 | 0.053 | 6.354 × 10−10 d | 0.04163 |
EGC1 | 0.00 | 0.049 | 8.800 × 10−12 e | 0.07830 |
EGC1-0.05 | 0.05 | 0.047 | 1.670 × 10−11 f | 0.05916 |
EGC1-0.30 | 0.30 | 0.048 | 1.747 × 10−10 d | 0.05616 |
EGC1-0.60 | 0.60 | 0.041 | 2.556 × 10−10 d | 0.04232 |
EGC1-0.95 | 0.95 | 0.041 | 2.700 × 10−10 d | 0.04515 |
EGC11 | 1.00 | 0.046 | 2.896 × 10−10 d | 0.06030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Lu, L.-X.; Yao, W.-R.; Pan, L. Diffusion Mechanism of Cinnamon Essential Oils Release from Calcium Alginate Based Controlled Release Films in Contact with Food Simulating Solvent. Materials 2020, 13, 5679. https://doi.org/10.3390/ma13245679
Chen X, Lu L-X, Yao W-R, Pan L. Diffusion Mechanism of Cinnamon Essential Oils Release from Calcium Alginate Based Controlled Release Films in Contact with Food Simulating Solvent. Materials. 2020; 13(24):5679. https://doi.org/10.3390/ma13245679
Chicago/Turabian StyleChen, Xi, Li-Xin Lu, Wei-Rong Yao, and Liao Pan. 2020. "Diffusion Mechanism of Cinnamon Essential Oils Release from Calcium Alginate Based Controlled Release Films in Contact with Food Simulating Solvent" Materials 13, no. 24: 5679. https://doi.org/10.3390/ma13245679
APA StyleChen, X., Lu, L. -X., Yao, W. -R., & Pan, L. (2020). Diffusion Mechanism of Cinnamon Essential Oils Release from Calcium Alginate Based Controlled Release Films in Contact with Food Simulating Solvent. Materials, 13(24), 5679. https://doi.org/10.3390/ma13245679