Polymer Flexible Joint as a Repair Method of Concrete Elements: Flexural Testing and Numerical Analysis
Abstract
:1. Introduction
1.1. Motivation
1.2. Idea of the Polymer Flexible Joint
1.3. Research Aim
2. Experimental Research
2.1. Materials
2.2. Testing Methodology
- Maximum force: 100 kN,
- Initial force: 0.80 kN,
- Test displacement rate: 0.10 mm/min,
- Span length: 300 mm,
- Distance between loads: 100 mm.
2.3. Test Results
2.3.1. Load Response
2.3.2. Failure Mode
2.3.3. Digital Image Correlation Results
2.3.4. Joint Effectiveness
3. Numerical Analysis
3.1. Finite Element Model
3.2. Constitutive Material Models
3.3. Solution Strategy
3.4. Numerical Results
4. Summary and Conclusions
- (1)
- The joint effectiveness of Polymer Flexible Joint with PT-type polymer in terms of load-bearing capacity is 87% (on average) in the experiments and 88% in the numerical analysis.
- (2)
- For specimens repaired with PT-type polymer, the polymer is decisive for the experimental and numerical results in terms of CMOD values. It was observed that the strain capacity of the repaired specimens was more than 280% higher than that of the original specimens.
- (3)
- The repaired specimens were able to manifest higher damage energy than the original ones; the area under stress-CMOD curve for repaired specimens was more than 2× higher than that of the original ones.
- (4)
- It is emphasized that the specimens repaired with PFJ have the load-bearing capacity of more than 80% of the original ones. In this way the PFJ can be used as a load-bearing connection. In addition, the higher flexibility of the connection leads to a reduction of possible imposed stresses and introduces additional ductile behavior of structural elements after repair.
- (5)
- Using DIC method, the phenomenon of stress redistribution around a flexible joint was documented.
- (6)
- The comparison between experimental and numerical analysis shows a good agreement of the results in terms of failure load and deformation (CMOD values).
- (7)
- The numerical model correctly reproduces the pre-critical phase and failure mechanism. It was proven that presented numerical simulations can be a useful and suitable tool for the analysis of pre-critical phase of a four-point bending test of concrete bonded with a polymer flexible compound.
- (8)
- However, the post-critical path was not satisfactory (lower stiffness in the results from numerical calculations than from experiments). Experimental results show much smoother curves during failure and in the post-critical phase than numerical calculations. The reason for this may be the friction of the support during the test, where a quasi-arch effect might have occurred. Further investigations are required to adequately describe the mechanism in the post-critical phase.
Author Contributions
Funding
Conflicts of Interest
References
- Houben, L. Damage on jointed plain concrete pavements: Causes and repairs. In Proceedings of the Workshop Diverse Uses of Concrete, Nairobi, Kenya, 23–27 November 2009; pp. 1–26. [Google Scholar]
- Zilch, K.; Wingenfeld, D.; Mühlbauer, C. Experimental investigation of reinforced glued joints. In Proceedings of the Hipermat 2012, Kassel, Germany, 7–9 March 2012. [Google Scholar]
- Rousakis, T.; Papadouli, E.; Sapalidis, A.; Vanian, V.; Ilki, A.; Halici, O.F.; Kwiecień, A.; Zając, B.; Hojdys, Ł.; Krajewski, P.; et al. Flexible Joints between RC frames and masonry infill for improved seismic performance—Shake table tests. In Proceedings of the 17th International Brick and Block Masonry Conference (17th IB2MAC 2020), Kraków, Poland, 5–8 July 2020; CRC Press/Balkema Taylor & Francis Group: Cracow, Poland, 2020; pp. 499–507. [Google Scholar]
- Sánchez, M.; Faria, P.; Horszczaruk, E.; Jonkers, H.M.; Kwiecień, A.; Mosa, J.; Peled, A.; Pereira, A.S.; Snoeck, D.; Stefanidou, M.; et al. External treatments for the preventive repair of existing constructions: A review. Constr. Build. Mater. 2018, 193, 435–452. [Google Scholar] [CrossRef] [Green Version]
- Šavija, B.; Feiteira, J.; Araújo, M.; Chatrabhuti, S.; Raquez, J.M.; Van Tittelboom, K.; Gruyaert, E.; De Belie, N.; Schlangen, E. Simulation-Aided Design of Tubular Polymeric Capsules for Self-Healing Concrete. Materials 2017, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Mullem, T.V.; Anglani, G.; Dudek, M.; Vanoutrive, H.; Bumanis, G.; Litina, C.; Kwiecień, A.; Al-Tabbaa, A.; Bajare, D.; Stryszewska, T.; et al. Addressing the need for standardization of test methods for selfhealing concrete: An inter-laboratory study on concrete with macrocapsules. Sci. Technol. Adv. Mater. 2020, 21, 661–682. [Google Scholar] [CrossRef] [PubMed]
- Soupionis, G.; Georgiou, P.; Zoumpoulakis, L. Polymer Composite Materials Fiber-Reinforced for the Reinforcement/Repair of Concrete Structures. Polymers 2020, 12, 2058. [Google Scholar] [CrossRef] [PubMed]
- Ghatte, H.F.; Comert, M.; Demir, C.; Akbaba, M.; Ilki, A. Seismic Retrofit of Full-Scale Substandard Extended Rectangular RC Columns through CFRP Jacketing: Test Results and Design Recommendations. J. Compos. Constr. ASCE 2019, 23, 04018071. [Google Scholar] [CrossRef]
- Kwiecień, A.; Krajewski, P.; Hojdys, Ł.; Tekieli, M.; Słoński, M. Flexible Adhesive in Composite-to-Brick Strengthening—Experimental and Numerical Study. Polymers 2018, 10, 356. [Google Scholar]
- Cruz, R.J.; Seręga, S.; Sena-Cruz, J.; Pereira, E.; Kwiecień, A.; Zając, B. Flexural behaviour of NSM CFRP laminate strip systems in concrete using stiff and flexible adhesives. Compos. Part B 2020, 195, 108042. [Google Scholar] [CrossRef]
- Kwiecień, A. Highly Deformable Polymers for Repair and Strengthening of Cracked Masonry Structures. GSTF Int. J. Eng. Technol. 2013, 2, 182–196. [Google Scholar] [CrossRef]
- Pröbster, M. Construction Sealants. Seal Joints Successfully (in German: Baudichtstoffe. Erforgreich Fugen Abdichten); Vieweg+Teubner Verlag: Wiesbaden, Germany, 2011; ISBN 9783834809520. [Google Scholar]
- Kwiecień, A.; Gruszczyński, M.; Zając, B. Tests of flexible polymer joints repairing of concrete pavements and of polymer modified concretes influenced by high deformations. Key Eng. Mater. 2011, 466, 225–239. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 10 December 2020).
- Pigliautile, I.; Marseglia, G.; Pisello, A.L. Investigation of CO2 Variation and Mapping through Wearable Sensing Techniques for Measuring Pedestrians’ Exposure in Urban Areas. Sustainability 2020, 12, 3936. [Google Scholar] [CrossRef]
- Kwiecień, A. Polymer Flexible Joints in Masonry and Concrete Structures (in Polish: Polimerowe Złącza Podatne w Konstrukcjach Murowych i Betonowych); Monography; Wydawnictwo Politechniki Krakowskiej: Cracow, Poland, 2012. [Google Scholar]
- Kisiel, P.; Kwiecień, A. Numerical Analysis of a Polymer Flexible Joint in a Tensile Test. Tech. Trans. Environ. Eng. 2013, 110, 63–71. [Google Scholar]
- Zdanowicz, Ł.; Kwiecień, A.; Seręga, S. Interaction of Polymer Flexible Joint with Brittle Materials in Four-Point Bending Tests. Procedia Eng. 2017, 193, 517–524. [Google Scholar] [CrossRef]
- Zdanowicz, Ł.; Kwiecień, A.; Tekieli, M.; Serȩga, S. Interaction of Polymer Flexible Joint with concrete elements in an uniaxial tensile test. In Proceedings of the High Tech Concrete: Where Technology and Engineering Meet—Proceedings of the 2017 FIB Symposium, Maastricht, The Netherlands, 12–14 June 2017; pp. 1049–1057. [Google Scholar]
- van Mier, J.G.M.; Mechtcherine, V. Minimum Demands for Deformation-Controlled Uniaxial Tensile Tests. In Experimental Determination of the Stress-Crack Openning Curve for Concrete in Tension (RILEM 187-SOC Report); RILEM Publications SARL: Paris, France, 2007; pp. 5–11. [Google Scholar]
- EN ISO 527-1. Plastics—Determination of Tensile Properties—Part 1: General Principles; British Standards Institution: London, UK, 2019. [Google Scholar]
- Pelka, C. Experimental Implementation of the Concept of a Polymer Anchorage for CFRP Rods (In German: Experimentelle Umsetzung des Konzepts Einer Polymerverankerungen für CFK-Stäbe); Leibniz Universität: Hannover, Germany, 2018. [Google Scholar]
- Kwiecień, A. New repair method of cracked concrete airfield surfaces using of polymer joint. In Proceedings of the 13th International Congress of Polymers in Concrete—ICPIC 2010, Funchal, Portugal, 10–12 February 2010; pp. 657–664. [Google Scholar]
- Malhotra, S.K. Some studies on end connection of compiste sandwich panels. In Proceedings of the Ninth International Conference on Composite Materials (ICCM/9), Madrid, Spain, 12–16 July 1993; Miravete, A., Ed.; Woodhead Publishing Limited: Zaragoza, Spain, 1993; pp. 384–389. [Google Scholar]
- Tekieli, M.; De Santis, S.; de Felice, G.; Kwiecień, A.; Roscini, F.; Felice, G.D.; Kwiecień, A.; Roscini, F. Application of Digital Image Correlation to composite reinforcements testing. Compos. Struct. 2017, 160, 670–688. [Google Scholar] [CrossRef]
- Słoński, M.; Tekieli, M. 2D Digital Image Correlation and Region-Based Convolutional Neural Network in Monitoring and Evaluation of Surface Cracks in Concrete Structural Elements. Materials 2020, 13, 3527. [Google Scholar] [CrossRef] [PubMed]
- Jasieńko, J.; Kwiecień, A.; Skłodowski, M. New flexible intervention solutions for protection, strengthening and reconstruction of damaged heritage buildings. In Proceedings of the International Conference on Earthquake Engineering and Post Disaster Reconstruction Planning (ICEE-PDRP 2016), Bhaktapur, Nepal, 24–26 April 2016. [Google Scholar]
- DIANA FEA. DIANA User Manual; DIANA FEA: Delft, The Netherlands, 2017. [Google Scholar]
- de Borst, R. Smeared cracking, plasticity, creep, and thermal loading-A unified approach. Comput. Methods Appl. Mech. Eng. 1987, 62, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, F.J. Nonlinear finite element analysis of reinforced concrete membranes. ACI Struct. J. 1989, 86, 26–35. [Google Scholar]
- Vecchio, F.J. Reinforced Concrete Membrane Element Formulations. J. Struct. Eng. 1990, 116, 730–750. [Google Scholar] [CrossRef]
- fib Internation Federation for Structural Concrete. fib Model Code for Concrete Structures 2010; International Federation for Structural Concrete (fib), Ed.; Wilheml Ernst & Sohn: Berlin, Germany, 2010. [Google Scholar]
Test | AV 1 [MPa] | SD 2 [MPa] | CV 3 [%] |
---|---|---|---|
Concrete compressive strength, fcm | 68.9 | 3.57 | 5.2 |
Concrete tensile strength, fctm | 3.73 | 0.34 | 9.1 |
Polymer PT-type compressive strength, fpc | 26.8 | 1.29 | 4.8 |
Polymer PT-type tensile strength, fpt | 18.8 | 1.36 | 7.2 |
Material | E [MPa] | ν [-] | ft [MPa] | Gf [N/mm] |
---|---|---|---|---|
Concrete | 36,700 | 0.20 | 3.73 | 0.150 1 |
Polymer PT-type | 700 | 0.49 | 20.0 | n/a |
Parameter | Original Specimen | Repaired Specimen | ||
---|---|---|---|---|
Experiment | FE-Analysis | Experiment | FE-Analysis | |
Failure load, Fmax [kN] | 8.63 | 7.84 | 7.52 | 7.00 |
CMOD at Fmax [μm] | 47.7 | 27.4 | 132.7 | 131.2 |
Strain at Fmax, Eknn [-] | 0.071 1 | 0.038 | 0.015 1 | 0.005 |
Damage energy [N/mm] | 0.193 | 0.087 | 0.408 | 0.318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdanowicz, Ł.; Seręga, S.; Tekieli, M.; Kwiecień, A. Polymer Flexible Joint as a Repair Method of Concrete Elements: Flexural Testing and Numerical Analysis. Materials 2020, 13, 5732. https://doi.org/10.3390/ma13245732
Zdanowicz Ł, Seręga S, Tekieli M, Kwiecień A. Polymer Flexible Joint as a Repair Method of Concrete Elements: Flexural Testing and Numerical Analysis. Materials. 2020; 13(24):5732. https://doi.org/10.3390/ma13245732
Chicago/Turabian StyleZdanowicz, Łukasz, Szymon Seręga, Marcin Tekieli, and Arkadiusz Kwiecień. 2020. "Polymer Flexible Joint as a Repair Method of Concrete Elements: Flexural Testing and Numerical Analysis" Materials 13, no. 24: 5732. https://doi.org/10.3390/ma13245732
APA StyleZdanowicz, Ł., Seręga, S., Tekieli, M., & Kwiecień, A. (2020). Polymer Flexible Joint as a Repair Method of Concrete Elements: Flexural Testing and Numerical Analysis. Materials, 13(24), 5732. https://doi.org/10.3390/ma13245732