Effect of Hot Deformation on Phase Transformation Kinetics in Isothermally Annealed 3Mn-1.6Al Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Non-Deformed Samples
3.2. Deformed Samples
4. Discussion
5. Conclusions
- The transformation of high-temperature austenite into ferrite is significantly hampered and delayed due to the control of this process by manganese diffusion. This makes it impossible to obtain an amount of ferrite suitable for the stabilization of the austenite by this method, even for long isothermal durations.
- The hot deformation at 900 °C resulted in a moderate amount of dynamic ferrite, especially beneficial at 750 and 700 °C.
- The application of deformation significantly accelerates and increases the kinetics of both ferritic and bainitic transformation of the tested steel. As a result, the higher ferrite fractions and resulting lower martensite start temperatures were noted for the plastically deformed samples.
- Despite the acceleration of the ferritic transformation and the 5h isothermal holding, it was possible to reduce Ms by only 60 °C and to obtain a small fraction of retained austenite in the steel held at 750 °C.
- The discussed method of heat treatment of medium manganese steels presents the possibility of obtaining austenitic-ferritic structures utilizing the industrial coiling practices. However, it requires the use of steels with a little bit higher manganese content and stronger accumulative deformations, which are closer to industrial conditions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ayenampudi, S.; Celada-Casero, C.; Sietsma, J.; Santofimia, M.J. Microstructure evolution during high-temperature partitioning of a medium-Mn quenching and partitioning steel. Materialia 2019, 8, 100492. [Google Scholar] [CrossRef]
- Wang, X.G.; He, B.B.; Liu, C.H.; Jiang, C.; Huang, M.X. Extraordinary Lüders-Strain-Rate in Medium Mn Steels. Materialia 2019, 6, 100288. [Google Scholar] [CrossRef]
- Li, Z.C.; Ding, H.; Misra, R.D.K.; Cai, Z.H. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments. Mater. Sci. Eng. A 2017, 682, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Bin, H.; Haiwen, L.; Feng, Y.; Han, D. Recent progress in medium-Mn steels made with new designing strategies, a review. Mater. Sci. Technol. 2017, 44, 1457–1464. [Google Scholar]
- Raabe, D.; Sun, B.; Da Silva, A.K.; Gault, B.; Yes, H.-W.; Sedighiani, K.; Sukumar, P.; Souza Filho, I.; Katnagallu, S.; Jagle, E.; et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels. Metall. Mater. Trans. A 2020, 51, 5517–5586. [Google Scholar] [CrossRef]
- Chiang, J.; Lawrence, B.; Boyd, J.D.; Pilkey, A.K. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater. Sci. Eng. A 2011, 528, 4516–4521. [Google Scholar] [CrossRef]
- Hanamura, T.; Torizuka, S.; Sunahara, A.; Imagumbai, M.; Takechi, H. Excellent total mechanical-properties-balance of 5% Mn, 30000 MPa% steel. ISIJ Int. 2011, 51, 685–687. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Poole, W.J.; Militzer, M. Austenite formation during intercritical annealing. Metall. Mater. Trans. A 2004, 35, 3363–3375. [Google Scholar] [CrossRef]
- Lee, S.; De Cooman, B.C. On the selection of the optimal intercritical annealing temperature for medium Mn TRIP steel. Metall. Mater. Trans. A 2013, 44, 5018–5024. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-G.; Mi, Z.-L.; Xu, M.; Xiu, Q.; Li, J.; Jiang, H.-T. Impact of intercritical annealing temperature and strain state on mechanical stability of retained austenite in medium Mn steel. Mater. Sci. Eng. A 2018, 725, 389–397. [Google Scholar] [CrossRef]
- Han, J.; Lee, Y.-K. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels. Acta Mater. 2014, 67, 354–361. [Google Scholar] [CrossRef]
- Skowronek, A.; Kozłowska, A.; Grajcar, A.; Morawiec, M. Microstructure-property relationships and mechanical stability of retained austenite in medium-C TRIP steel at different deformation temperatures. Arch. Metall. Mater. 2020, 65, 941–949. [Google Scholar] [CrossRef]
- Grajcar, A.; Kozłowska, A.; Radwański, K.; Skowronek, A. Quantitative analysis of microstructure evolution in hot-rolled multiphase steel subjected to interrupted tensile test. Metals 2019, 9, 1304. [Google Scholar] [CrossRef] [Green Version]
- Han, D.T.; Xu, Y.B.; Zou, Y.; Hu, Z.P.; Chen, S.Q.; Yu, Y.M. Effect of Al on the microstructure and mechanical properties of hot-rolled medium-Mn steel. Mater. Sci. Forum. 2018, 941, 292–298. [Google Scholar] [CrossRef]
- Kozłowska, A.; Grzegorczyk, B.; Staszuk, M.; Nuckowski, P.M.; Grajcar, A. Analysis of plastic deformation instabilities at elevated temperatures in hot-rolled medium-Mn steel. Materials 2019, 12, 4184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Song, W.; Zhou, S.; Schwedt, A.; Bleck, W. Influence of intercritical annealing temperature on microstructure and mechanical properties of a cold-rolled medium-Mn steel. Metals 2018, 8, 357. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhu, W.-T.; Yan, S.; Chen, L.-Q. Effect of microstructure on tensile behavior and mechanical stability of retained austenite in a cold-rolled Al-containing TRIP steel. Acta Metall. Sin. 2019, 32, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- Schneider, R.; Steineder, K.; Krizan, D.; Sommitsch, C. Effect of the heat treatment on the microstructure and mechanical properties of medium-Mn-steels. Mater. Sci. Technol. 2019, 35, 2045–2053. [Google Scholar] [CrossRef]
- Han, J.; Lee, S.-J.; Jung, J.-G.; Lee, Y.-K. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel. Acta Mater. 2014, 78, 369–377. [Google Scholar] [CrossRef]
- Grajcar, A.; Kilarski, A.; Kozlowska, A. Microstructure–property relationships in thermomechanically processed medium-Mn steels with high al content. Metals 2018, 8, 929. [Google Scholar] [CrossRef] [Green Version]
- Beladi, H.; Kelly, G.L.; Hodgson, P.D. Ultrafine grained structure formation in steels using dynamic strain induced transformation processing. Int. Mater. Rev. 2007, 52, 14–28. [Google Scholar] [CrossRef]
- Hou, F.; Bai, Y.; Shibata, A.; Tsuji, N. Microstructure evolution during thermomechanical processing in 3Mn-0.1C medium-Mn steel. Mater. Sci. Technol. 2019, 35, 2101–2108. [Google Scholar] [CrossRef]
- Ito, A.; Shibata, A.; Tsuji, N. Thermomechanical processing of medium manganese steels. Mater. Sci. Forum. 2016, 879, 90–94. [Google Scholar] [CrossRef]
- Nakada, N.; Mizutani, K.; Tsuchiyama, T.; Takaki, S. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater. 2014, 65, 251–258. [Google Scholar] [CrossRef]
- Grajcar, A.; Rozanski, M.; Kaminska, M.; Grzegorczyk, B. Effect of gas atmosphere on the non-metallic inclusions in laser-welded trip steel with Al and Si additions. Mater. Tehnol. 2016, 50, 945–950. [Google Scholar] [CrossRef]
- Slavov, V.I.; Chaschin, V.V.; Kostylev, S.N.; Naumova, O.M.; Khlybov, O.S.; Puchkov, A.V. Impact of coil cooling rate on texture, special boundaries and properties of hot rolled strip. Mater. Sci. Forum. 2004, 467–470, 323–328. [Google Scholar] [CrossRef]
- Jacolot, R.; Huin, D.; Marmulev, A.; Mathey, E. Hot rolled coil property heterogeneities due to coil cooling: Impact and prediction. Key. Eng. Mater. 2014, 622–623, 919–928. [Google Scholar] [CrossRef]
- Zouhar, G.; Sadowski, St.; Zieger, H.; Bläsner, R.; Hänsch, W.; Höfel, P.; Holtheuer, U. Cooling rate-coiling temperature diagrams to setup strip cooling at the run-out table and calculate texture and mechanical properties of hot rolled steel strip. Steel Res. Int. 2007, 78, 566–572. [Google Scholar] [CrossRef]
- ASTM A1033-04. Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations; ASTM International: West Conshohocken. Available online: https://www.astm.org/ (accessed on 25 July 2020).
- Pawłowski, B.; Bała, P.; Dziurka, R. Improper interpretation of dilatometric data for cooling transformation in steels. Arch. Metall. Mater. 2014, 59, 1159–1161. [Google Scholar] [CrossRef] [Green Version]
- Morawiec, M.; Ruiz-Jimenez, V.; Garcia-Mateo, C.; Grajcar, A. Thermodynamic analysis and isothermal bainitic transformation kinetics in lean medium-Mn steels. J. Therm. Anal. Calorim. 2020, 142, 1709–1719. [Google Scholar] [CrossRef]
- Kamikawa, N.; Tsuji, N.; Minamino, Y. Microstructure and texture through thickness of ultralow carbon IF steel sheet severely deformed by accumulative roll-bonding. Sci. Technol. Adv. Mater. 2004, 5, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Park, N.; Tian, Y.; Shibata, A.; Tsuji, N. Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties. Sci. Rep. 2016, 6, 39127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, N.; Khamsuk, S.; Shibata, A.; Tsuji, N. Occurrence of dynamic ferrite transformation in low-carbon steel above Ae3. Scr. Mater. 2013, 68, 538–541. [Google Scholar] [CrossRef]
- Roumen, H.; Juri, S.; Leo, A. (Eds.) Advanced high-strength steels: Microstructure and texture evolution. In Encyclopedia of Iron, Steel, and Their Alloys; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4665-1104-0. [Google Scholar]
- Grajcar, A.; Kwaśny, W.; Zalecki, W. Microstructure–property relationships in TRIP aided medium-C bainitic steel with lamellar retained austenite. Mater. Sci. Technol. 2015, 31, 781–794. [Google Scholar] [CrossRef]
- Han, J.; Nam, J.-H.; Lee, Y.-K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel. Acta Mater. 2016, 113, 1–10. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Song, X.T.; Liang, J.W.; Shen, Y.F.; Misra, R.D.K. Innovative processing of obtaining nanostructured bainite with high strength-high ductility combination in low-carbon-medium-Mn steel: Process-structure-property relationship. Mater. Sci. Eng. A 2018, 718, 267–276. [Google Scholar] [CrossRef]
- Li, Z.-D.; Yang, Z.-G.; Zhang, C.; Liu, Z.-Q. Influence of austenite deformation on ferrite growth in a Fe–C–Mn alloy. Mater. Sci. Eng. A 2010, 527, 4406–4411. [Google Scholar] [CrossRef]
- Das, S.; Haldar, A. Formation of fully pearlitic microstructure in medium carbon steel. Philos. Mag. 2014, 94, 3281–3294. [Google Scholar] [CrossRef]
- Zurob, H.S.; Hutchinson, C.R.; Béché, A.; Purdy, G.R.; Bréchet, Y.J.M. A transition from local equilibrium to paraequilibrium kinetics for ferrite growth in Fe–C–Mn: A possible role of interfacial segregation. Acta Mater. 2008, 56, 2203–2211. [Google Scholar] [CrossRef]
- Wei, R.; Enomoto, M.; Hadian, R.; Zurob, H.S.; Purdy, G.R. Growth of austenite from as-quenched martensite during intercritical annealing in an Fe–0.1C–3Mn–1.5Si alloy. Acta Mater. 2013, 61, 697–707. [Google Scholar] [CrossRef]
- Kučerová, L.; Bystrianský, M. Comparison of thermo-mechanical treatment of C-Mn-Si-Nb and C-Mn-Si-Al-Nb TRIP steels. Procedia Eng. 2017, 207, 1856–1861. [Google Scholar] [CrossRef]
- Trzaska, J. Empirical formulae for the calculation of austenite supercooled transformation temperatures. Arch. Metall. Mater. 2015, 60, 181–185. [Google Scholar] [CrossRef]
- Lee, T.-H.; Oh, C.-S.; Kim, S.-J. Effects of nitrogen on deformation-induced martensitic transformation in metastable austenitic Fe–18Cr–10Mn–N steels. Scr. Mater. 2008, 58, 110–113. [Google Scholar] [CrossRef]
Chemical Element | C | Mn | Al | Nb | Mo | Si |
---|---|---|---|---|---|---|
wt% | 0.17 | 3.1 | 1.6 | 0.04 | 0.22 | 0.22 |
Temperature, °C | Ac1 | Ac3 | Ms |
---|---|---|---|
Dilatometric study | 715 | 1013 | 389 |
Sample | Ms, °C | Hardness | Ferrite Fraction, % | ||
---|---|---|---|---|---|
HV1 | HV0.01 | ||||
Ferrite | Martensite | ||||
600ND | 388 | 432 ± 6 | x | 410 ± 4 | x |
650ND | 385 | 426 ± 10 | x | 408 ± 3 | x |
700ND | 362 | 388 ± 18 | 154 ± 6 | 404 ± 5 | 16 ± 1.8 |
750ND | 356 | 394 ± 16 | 160 ± 4 | 406 ± 3 | 12 ± 2.1 |
Sample | Ms, °C | Hardness | Ferrite Fraction, % | ||
---|---|---|---|---|---|
HV1 | HV0.01 | ||||
Ferrite | Martensite | ||||
600D | 372 | 425 ± 8 | 170 ± 6 | 416 ± 5 | 4 ± 0.5 |
650D | 345 | 389 ± 12 | 178 ± 7 | 413 ± 5 | 15 ± 1.9 |
700D | 321 | 362 ± 20 | 172 ± 3 | 414 ± 3 | 24 ± 1.5 |
750D | 324 | 380 ± 18 | 168 ± 4 | 412 ± 4 | 23 ± 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skowronek, A.; Morawiec, M.; Kozłowska, A.; Pakieła, W. Effect of Hot Deformation on Phase Transformation Kinetics in Isothermally Annealed 3Mn-1.6Al Steel. Materials 2020, 13, 5817. https://doi.org/10.3390/ma13245817
Skowronek A, Morawiec M, Kozłowska A, Pakieła W. Effect of Hot Deformation on Phase Transformation Kinetics in Isothermally Annealed 3Mn-1.6Al Steel. Materials. 2020; 13(24):5817. https://doi.org/10.3390/ma13245817
Chicago/Turabian StyleSkowronek, Adam, Mateusz Morawiec, Aleksandra Kozłowska, and Wojciech Pakieła. 2020. "Effect of Hot Deformation on Phase Transformation Kinetics in Isothermally Annealed 3Mn-1.6Al Steel" Materials 13, no. 24: 5817. https://doi.org/10.3390/ma13245817
APA StyleSkowronek, A., Morawiec, M., Kozłowska, A., & Pakieła, W. (2020). Effect of Hot Deformation on Phase Transformation Kinetics in Isothermally Annealed 3Mn-1.6Al Steel. Materials, 13(24), 5817. https://doi.org/10.3390/ma13245817