Properties of Lightweight Aggregate Concrete Reinforced with Carbon and/or Polypropylene Fibers
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Mix Proportions and Materials
2.2. Specimen Preparation
2.3. Test Setup and Procedure
2.3.1. Segregation Resistance
2.3.2. Mechanical Properties
3. Test Results and Discussion
3.1. Slump
3.2. Density
3.3. Stability and Segregation of LWA
3.4. Specific and Cube Compressive Strengths
3.5. Splitting Tensile and Flexural Strength
4. Compressive Stress–Strain Behavior
4.1. Stress–Strain Curve
4.2. Characteristics of Stress–Strain Curves
4.2.1. Axial Compressive Strength
4.2.2. Peak Strain
4.2.3. Elastic Modulus
4.3. Ductility
4.4. Toughness
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grabois, T.M.; Cordeiro, G.C.; Toledo Filho, R.D. Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers. Constr. Build. Mater. 2016, 104, 284–292. [Google Scholar] [CrossRef]
- Gesog˘lu, M.; Özturan, T.; Güneyisi, E. Shrinkage cracking of lightweight concrete made with cold-bonded fly ash aggregates. Cem. Concr. Res. 2004, 34, 113–121. [Google Scholar]
- Youm, K.S.; Moon, J.; Cho, J.Y.; Kim, J.J. Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. Constr. Build. Mater. 2016, 114, 517–527. [Google Scholar] [CrossRef]
- Duzgun, O.A.; Gul, R.; Aydin, A.C. Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete. Mater. Lett. 2005, 59, 3357–3363. [Google Scholar] [CrossRef]
- Zhang, M.H.; Gjorv, O.E. Mechanical properties of high-strength lightweight concrete. ACI Mater. J. 1991, 88, 240–247. [Google Scholar]
- Tanyildizi, H. Effect of temperature, carbon fibers, and silica fume on the mechanical properties of lightweight concretes. New Carbon Mater. 2008, 23, 339–344. [Google Scholar] [CrossRef]
- Li, J.J.; Niu, J.G.; Wan, C.J.; Jin, B.; Yin, Y.L. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete. Constr. Build. Mater. 2016, 118, 27–35. [Google Scholar] [CrossRef]
- Wang, D.H.; Ju, Y.Z.; Shen, H.; Xu, L.B. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Constr. Build. Mater. 2019, 197, 464–473. [Google Scholar] [CrossRef]
- Banthia, N.; Soleimani, S.M. Flexural response of hybrid fiber-reinforced cementitious composites. ACI Mater. J. 2005, 102, 382–389. [Google Scholar]
- Guler, S. The effect of polyamide fibers on the strength and toughness properties of structural lightweight aggregate concrete. Constr. Build. Mater. 2018, 173, 394–402. [Google Scholar] [CrossRef]
- Smarzewski, P. Influence of basalt-polypropylene fibers on fracture properties of high performance concrete. Cem. Struct. 2019, 209, 23–33. [Google Scholar] [CrossRef]
- Aslani, F.; Nejadi, S. Self-compacting concrete incorporating steel and polypropylene fibers: Compressive and tensile strengths, moduli of elasticity and rupture, compressive stress-strain curve, and energy dissipated under compression. Compos. Part B 2013, 53, 121–133. [Google Scholar] [CrossRef]
- Shafigh, P.; Mahmud, H.; Jumaat, M.Z. Effect of steel fiber on the mechanical properties of oil palm shell lightweight concrete. Mater. Des. 2011, 32, 3926–3932. [Google Scholar] [CrossRef]
- Gao, J.; Suqa, W.; Morino, K. Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete. Cem. Concr. Compos. 1997, 19, 307–313. [Google Scholar] [CrossRef]
- Hassanpour, M.; Shafigh, P.; Mahmud, H.B. Lightweight aggregate concrete fiber reinforcement—A review. Constr. Build. Mater. 2012, 37, 452–461. [Google Scholar] [CrossRef]
- Erdem, S.; Dawson, A.R.; Thom, N.H. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates. Cem. Concr. Res. 2012, 42, 291–305. [Google Scholar] [CrossRef]
- Yanga, G.J.; Parkb, M.; Parka, S.J. Recent progresses of fabrication and characterization of fibers-reinforced composites: A review. Compos. Commun. 2019, 14, 34–42. [Google Scholar] [CrossRef]
- Chen, P.W.; Fu, X.; Chung, D.D.L. Microstructural and mechanical effects of latex, methylcellulose and silica fume on carbon fiber-reinforced cement. ACI Mater. J. 1997, 94, 147–155. [Google Scholar]
- Lei, J.; Shi, C.; Zhou, S.; Gu, Z.; Zhang, L.C. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding. Surf. Coat. Technol. 2018, 334, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Buendía, A.M.L.; Sánchez, M.D.R.; Climent, V.; Guillem, C. Surface treated polypropylene (PP) fibres for reinforced concrete. Cem. Concr. Res. 2013, 54, 29–35. [Google Scholar] [CrossRef]
- Alhozaimy, A.M.; Soroushian, P.; Mirza, F. Mechanical properties of polypropylene fiber reinforced concrete and the effect of pozzolanic materials. Cem. Concr. Compos. 1996, 18, 85–92. [Google Scholar] [CrossRef]
- Bagherzadeh, R.; Sadeghi, A.H.; Latifi, M. Utilizing polypropylene fibers to improve physical and mechanical properties of concrete. Text Res. J. 2012, 8, 88–96. [Google Scholar] [CrossRef]
- Wu, T.; Yang, X.; Wei, H.; Liu, X. Mechanical properties and microstructure of lightweight aggregate concrete with and without fibers. Constr. Build. Mater. 2019, 199, 526–539. [Google Scholar] [CrossRef]
- CS (Chinese Standard) GB175-2007. Common Portland Cement, China Architecture and Building Press; Ministry of Construction of the People’s Republic of China and Quality Supervision Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2007. (In Chinese)
- Kılıç, A.; Atiş, C.D.; Yaşar, E.; Ozcan, F. High-strength lightweight concrete made with scoria aggregate containing mineral admixtures. Cem. Concr. Res. 2003, 33, 1595–1599. [Google Scholar] [CrossRef]
- Meng, W.; Khayat, K.H. Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar. Compos. Part B 2017, 117, 26–34. [Google Scholar] [CrossRef]
- CS (Chinese Standard) CB 50164-2011. Standard for Quality Control of Concrete, China Architecture and Building Press; Ministry of Construction of the People’s Republic of China and Quality Supervision Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011. (In Chinese)
- Daneti, S.B.; Wee, T.H. Behaviour of hybrid fiber reinforced high-strength lightweight aggregate concrete. Mag. Concr. Res. 2011, 63, 785–796. [Google Scholar] [CrossRef]
- Khayat, K.H.; Guizani, Z. Use of viscosity-modifying admixtures to enhance stability of fluid concrete. ACI Mater. J. 1997, 94, 332–340. [Google Scholar]
- CS (Chinese Standard) JGJ51-2002. Light-Weight Aggregate Concrete Technical Regulations, China Architecture and Building Press; Ministry of Construction of the People’s Republic of China: Beijing, China, 2002. (In Chinese)
- CS (Chinese Standard) GB/T 50081-2019. Standard for Test Method of Concrete Physical and Mechanical Properties, China Architecture and Building Press; Ministry of Construction of the People’s Republic of China and Quality Supervision Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2019. (In Chinese)
- CS (Chinese Standard) CECS 13-2009. Standard Test Methods for Fiber Reinforced Concrete, China Association for Engineering Construction Standardization; China Association for Engineering Construction Standardization: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Wei, Y.; Wu, Y.F. Compressive behavior of concrete columns confined by high strength steel wire. Constr. Build. Mater. 2014, 54, 443–453. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties and Materials, 3rd ed.; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Qin, Y.; Zhang, X.W.; Chai, J.R.; Xu, Z.; Li, S. Experimental study of compressive behavior of polypropylene-fiber reinforced and polypropylene-fiber-fabric-reinforced concrete. Constr. Build. Mater. 2019, 194, 216–225. [Google Scholar] [CrossRef]
- Libre, N.A.; Shekarchi, M.; Mahoutian, M.; Soroushian, P. Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Constr. Build. Mater. 2011, 25, 2458–2464. [Google Scholar] [CrossRef]
- CEB. Functional classification of lightweight concrete, Recommendations LC2, 2nd ed.; RILEM Publications SARL: Stuttgart, Germany, 1978. [Google Scholar]
- ACI Committee Report 213R-14. Guide for Structural Lightweight Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2014. [Google Scholar]
- Yew, M.K.; Mahmud, H.B.; Ang, B.C.; Yew, M.C. Influence of different types of polypropylene fibre on the mechanical properties of high-strength oil palm shell lightweight concrete. Constr. Build. Mater. 2015, 90, 36–43. [Google Scholar] [CrossRef]
- Fallah, S.; Nematzadeh, M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr. Build. Mater. 2017, 132, 170–187. [Google Scholar] [CrossRef]
- Victor, C.L. Large volume, high-performance applications of fibers in civil engineering. J. Appl. Polym. Sci. 2002, 83, 660–686. [Google Scholar]
- ACI Committee 116R-00. Cement and Concrete Terminology; American Concrete Institute: New York, NY, USA, 2000. [Google Scholar]
- Chia, K.S.; Zhang, M.H. Effect of chemical admixtures on rheological parameters and stability of fresh lightweight aggregate concrete. Mag. Concr. Res. 2004, 56, 465–473. [Google Scholar] [CrossRef]
- Hsie, M.; Yu, C.; Song, P.S. Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 2008, 494, 153–157. [Google Scholar] [CrossRef]
- Clarke, J.L. Structural Lightweight Concrete; Blackie Academic & Professional: Glasgow, UK, 1993. [Google Scholar]
- Moravia, W.G.; Gumieri, A.G.; Vasconcelos, E.L. Specific strength and modulus of elasticity of lightweight concrete with expanded clay aggregate. IBRACON 2010, 3, 195–204. [Google Scholar] [CrossRef]
- Shafigh, P.; Chai, L.J.; Mahmud, H.B.; Nomeli, M.A. A comparison study of the fresh and hardened properties of normal weight and lightweight aggregate concretes. J. Build. Eng. 2018, 15, 252–260. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Tahmouresi, B.; Saradar, A. Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Constr. Build. Mater. 2018, 162, 321–333. [Google Scholar] [CrossRef]
- Ralegaonlar, R.; Gavali, H.; Aswath, P.; Abolmaali, S. Application of chopped basalt fibers in reinforced mortar: A review. Constr. Build. Mater. 2018, 164, 589–602. [Google Scholar] [CrossRef]
- Domagała, L. Modification of properties of structural lightweight concrete with steel fibres. J. Civ. Eng. Manag. 2011, 17, 36–44. [Google Scholar] [CrossRef]
- Vonk, R.A. A micromechanical investigation of softening of concrete loaded in compression. Heron 1993, 38, 1–94. [Google Scholar]
- CS (Chinese Standard) GB50010-2010. Code for Design of Concrete Structures, China Architecture and Building Press; Ministry of Construction of the People’s Republic of China and Quality Supervision Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2010. (In Chinese)
- Xiao, J.; Li, J.; Zhang, C. Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem. Concr. Res. 1992, 14, 131–141. [Google Scholar] [CrossRef]
- Nematzadeh, M.; Nasiri, A.B. Residual properties of concrete containing recycled refractory brick aggregate at elevated temperatures. J. Mater. Civil Eng. 2018, 30, 04017255. [Google Scholar] [CrossRef]
- CEB-FIP Model Code, Model code for concrete structures, Bulletin D’Information 117-E; Federation Internationale du Beton: Laus-anne, Switzerland, 2010.
- Suksawang, N.; Wtaife, S.; Alsabbagh, A. Evaluation of elastic modulus of fiber reinforced concrete. ACI Mater. J. 2018, 115, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Neves, R.D.; Almeida, J.C.O.F. Compressive behaviour of steel fibre reinforced concrete. Struct. Concr. 2005, 6, 1–8. [Google Scholar] [CrossRef]
- ASTM C1018-97. Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete; American Society for Testing and Materials: West Conshohocken, PA, USA, 1997. [Google Scholar]
- Foster, S.J.; Attard, M.M. Experimental tests on eccentrically loaded high strength concrete columns. ACI Struct. J. 1997, 94, 295–302. [Google Scholar]
- Shin, H.O.; Min, K.H.; Mitchell, D. Confinement of ultra-high-performance fiber reinforced concrete columns. Compos. Struct. 2017, 176, 124–142. [Google Scholar] [CrossRef]
- Nataraja, M.C.; Dhang, N.; Gupta, A.P. Stress-strain curves for steel-fiber reinforced concrete under compression. Cem. Concr. Compos. 1999, 21, 383–390. [Google Scholar] [CrossRef]
- Jang, S.J.; Yun, H.D. Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete. Compos. Struct. 2018, 185, 203–211. [Google Scholar] [CrossRef]
- ACI Committee 318-14. Building Code Requirements for Structural Concrete; American Concrete Institute: New York, NY, USA, 2014. [Google Scholar]
- Fanella, D.A.; Naaman, A.E. Stress-strain properties of fiber reinforced mortar in compression. ACI J. Proc. 1985, 82, 475–483. [Google Scholar]
Fiber/(%) | – | Carbon Fiber | Polypropylene Fiber | Basalt/Polypropylene Hybrid Fibers | |||||
---|---|---|---|---|---|---|---|---|---|
– | 0.2 | 0.4 | 0.2 | 0.4 | 0.2/0.2 | 0.2/0.4 | 0.4/0.2 | 0.4/0.4 | |
Mix code | Plain | C0.2 | C0.4 | PP0.2 | PP0.4 | C0.2PP0.2 | C0.2PP0.4 | C0.4PP0.2 | C0.4PP0.4 |
Cement | Silica Fume | Fly Ash | LWA 1 | Sand | Water | Superplasticizer | w/b 2 |
---|---|---|---|---|---|---|---|
440 | 44 | 66 | 578 | 667 | 165 | 5.2 | 0.3 |
Apparent Density/(kg/m3) | Bulk Density/(kg/m3) | Total Porosity/(%) | 1 h/24 h Water Absorption/(%) | Crushing Strength/MPa | Aggregate Volume Fraction/(%) | ||
---|---|---|---|---|---|---|---|
2.36–5 mm | 5–10 mm | 10–16 mm | |||||
1512 | 860 | 43.12 | 2.2/2.6 | 6.9 | 11 | 68 | 21 |
Fiber Species | Length/mm | Diameter/μm | Shape | Density/(kg/m3) | Fracture Elongation/(%) | Elasticity Modulus/GPa | Tensile Strength/MPa |
---|---|---|---|---|---|---|---|
Carbon (C) | 8–10 | 7 | Straight round bundled filaments | 1800 | 2.1 | 240 | >4000 |
Polypropylene (PP) | 15–22 | 80 | Straight round bundled filaments | 910 | 17 | 4.2 | >400 |
Binder | CaO/(%) | SiO2/(%) | Al2O3/(%) | Fe2O3/(%) | MgO/(%) | SO3/(%) | K2O/(%) | Na2O/(%) | LOI 2/(%) | SG 3/(g/cm³) |
---|---|---|---|---|---|---|---|---|---|---|
Cement | 62.81 | 20.36 | 5.67 | 3.84 | 2.68 | 2.51 | 0.87 | 0.19 | 1.07 | 3.15 |
SF 1 | 0.48 | 92.83 | 0.68 | 1.17 | 1.24 | 0.40 | 1.21 | 0.95 | 1.04 | 2.7 |
Fly ash | 7.74 | 48.40 | 27.13 | 8.04 | 2.47 | 1.48 | 1.61 | 2.35 | 0.78 | 2.6 |
Test | Specimen Size/mm3 | Number of Specimens | Test Age |
---|---|---|---|
Cube compressive strength | 100 × 100 × 100 | 3 × 6 | 3, 7, 28, 60, 120, 240 |
Splitting tensile strength | 100 × 100 × 100 | 3 | 28 |
Flexural tensile strength | 100 × 100 × 400 | 3 | 28 |
Stress–strain behavior | 100 × 100 × 300 | 2 | 28 |
Mix Code | Slump/mm | Slump Type | Demolded Density/(kg/m3) | Oven-Dry Density/(kg/m3) |
---|---|---|---|---|
Plain | 255 | Collapse | 2049 | 1849 |
C0.2 | 214 | Collapse | 1995 | 1825 |
C0.4 | 102 | True | 2042 | 1844 |
PP0.2 | 250 | Collapse | 1886 | 1730 |
PP0.4 | 235 | Collapse | 1871 | 1728 |
C0.2PP0.2 | 212 | True | 1892 | 1724 |
C0.2PP0.4 | 160 | True | 1932 | 1762 |
C0.4PP0.2 | 65 | True | 1927 | 1751 |
C0.4PP0.4 | 75 | True | 1993 | 1808 |
Mixture ID | Layer | LWA/g | SC/(%) | MI/(%) |
---|---|---|---|---|
Plain | Top | 1116 | 1.381 | 2.762 |
Bottom | 1056 | |||
C0.2 | Top | 1093 | 1.075 | 2.150 |
Bottom | 1047 | |||
C0.4 | Top | 1028 | 0.442 | 0.883 |
Bottom | 1010 | |||
PP0.2 | Top | 1087 | 1.346 | 2.692 |
Bottom | 1030 | |||
PP0.4 | Top | 1180 | 0.840 | 1.680 |
Bottom | 1141 | |||
C0.2PP0.2 | Top | 1040 | 1.206 | 2.413 |
Bottom | 991 | |||
C0.2PP0.4 | Top | 1020 | 0.746 | 1.493 |
Bottom | 990 | |||
C0.4PP0.2 | Top | 1010 | 0.374 | 0.748 |
Bottom | 995 | |||
C0.4PP0.24 | Top | 1017 | 0.347 | 0.693 |
Bottom | 1003 |
Mixture Code | Compressive Strength/(MPa) | Splitting Tensile Strength/(MPa) | Flexural Strength/(MPa) | |||||
---|---|---|---|---|---|---|---|---|
3-Day | 7-Day | 28-Day | 60-Day | 120-Day | 240-Day | |||
Plain | 49.28 (0.036) | 50.23 (0.041) | 58.24 (0.030) | 59.54 (0.057) | 61.44 (0.052) | 62.90 (0.041) | 2.50 (0.075) | 4.77 (0.025) |
C0.2 | 44.32 (0.061) | 47.21 (0.031) | 57.99 (0.033) | 59.84 (0.036) | 60.82 (0.032) | 61.45 (0.037) | 3.20 (0.101) | 5.89 (0.032) |
C0.4 | 48.21 (0.024) | 52.06 (0.025) | 67.11 (0.031) | 68.39 (0.035) | 72.10 (0.042) | 73.59 (0.052) | 3.70 (0.095) | 6.44 (0.056) |
PP0.2 | 39.33 (0.069) | 41.06 (0.055) | 49.64 (0.047) | 50.69 (0.067) | 55.63 (0.008) | 56.02 (0.038) | 2.76 (0.051) | 5.03 (0.048) |
PP0.4 | 32.33 (0.033) | 33.91 (0.053) | 40.99 (0.064) | 42.70 (0.027) | 44.25 (0.072) | 45.35 (0.058) | 3.20 (0.071) | 4.94 (0.092) |
C0.2PP0.2 | 38.16 (0.024) | 42.17 (0.061) | 48.26 (0.019) | 51.58 (0.012) | 54.66 (0.037) | 57.08 (0.030) | 3.22 (0.094) | 6.39 (0.042) |
C0.2PP0.4 | 40.10 (0.036) | 47.30 (0.039) | 50.65 (0.030) | 54.89 (0.020) | 56.86 (0.057) | 58.96 (0.044) | 2.87 (0.068) | 5.32 (0.096) |
C0.4PP0.2 | 39.28 (0.046) | 43.68 (0.050) | 51.36 (0.047) | 54.78 (0.023) | 56.07 (0.013) | 58.67 (0.025) | 3.92 (0.101) | 6.46 (0.059) |
C0.4PP0.4 | 44.78 (0.096) | 51.82 (0.017) | 56.88 (0.028) | 60.13 (0.016) | 63.62 (0.043) | 66.72 (0.059) | 3.62 (0.074) | 5.53 (0.032) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Wu, T.; Yang, X. Properties of Lightweight Aggregate Concrete Reinforced with Carbon and/or Polypropylene Fibers. Materials 2020, 13, 640. https://doi.org/10.3390/ma13030640
Wei H, Wu T, Yang X. Properties of Lightweight Aggregate Concrete Reinforced with Carbon and/or Polypropylene Fibers. Materials. 2020; 13(3):640. https://doi.org/10.3390/ma13030640
Chicago/Turabian StyleWei, Hui, Tao Wu, and Xue Yang. 2020. "Properties of Lightweight Aggregate Concrete Reinforced with Carbon and/or Polypropylene Fibers" Materials 13, no. 3: 640. https://doi.org/10.3390/ma13030640
APA StyleWei, H., Wu, T., & Yang, X. (2020). Properties of Lightweight Aggregate Concrete Reinforced with Carbon and/or Polypropylene Fibers. Materials, 13(3), 640. https://doi.org/10.3390/ma13030640