In Situ Microgravimetric Study of Ion Exchanges in the Ternary Cu-In-S System Prepared by Atomic Layer Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Film Synthesis and In-Situ Growth Characterization
2.1.1. Atomic Layer Deposition
2.1.2. In-Situ Quartz Crystal Microbalance (QCM) Measurements
2.2. Thin Film Characterization
3. Results and Discussion
3.1. In-Situ Microgravimetric Study of In2S3 Material (Experiment #1)
3.2. In Situ Microgravimetric Study of CuxS Material (Experiment #2)
3.3. Growth of CuInS2 Films (Experiments #3–5)
3.3.1. Reaction Mechanisms of In2S3 on a CuxS Substrate (Experiment #3)
3.3.2. Reaction Mechanisms of CuxS on a In2S3 Substrate (Experiments #4–#6)
3.3.3. Reaction Mechanisms of Cu(acac)2 on a In2S3 Substrate (Experiments #7 and #8)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Miikkulainen, V.; Leskelä, M.; Ritala, M.; Puurunen, R.L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 2013, 113, 021301. [Google Scholar] [CrossRef]
- Puurunen, R.L. A Short History of Atomic Layer Deposition: Tuomo Suntola’s Atomic Layer Epitaxy: A Short History of Atomic Layer. Chem. Vap. Depos. 2014, 20, 332–344. [Google Scholar] [CrossRef] [Green Version]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.V.; Grillo, F.; Ommen, J.R. van Atomic and molecular layer deposition: off the beaten track. Chem. Commun. 2016, 53, 45–71. [Google Scholar]
- Mackus, A.J.M.; Schneider, J.R.; MacIsaac, C.; Baker, J.G.; Bent, S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review. Chem. Mater. 2019, 31, 1142–1183. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Ngo, T.Q.; Hu, S.; Posadas, A.; Demkov, A.A.; Ekerdt, J.G. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors. Appl. Phys. Rev. 2015, 2, 041301. [Google Scholar] [CrossRef]
- Sønsteby, H.H.; Fjellvåg, H.; Nilsen, O. Functional Perovskites by Atomic Layer Deposition – An Overview. Adv. Mater. Interfaces 2017, 4, 1600903. [Google Scholar] [CrossRef]
- Dasgupta, N.P.; Meng, X.; Elam, J.W.; Martinson, A.B.F. Atomic Layer Deposition of Metal Sulfide Materials. Acc. Chem. Res. 2015, 48, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Tell, B.; Shay, J.L.; Kasper, H.M. Electrical properties, optical properties, and band structure of CuGaS2 and CuInS2. Phys. Rev. B 1971, 4, 2463. [Google Scholar] [CrossRef]
- Neumann, H.; Hörig, W.; Savelev, V.; Lagzdonis, J.; Schumann, B.; Kühn, G. The optical properties of CuInS2 thin films. Thin Solid Films 1981, 79, 167–171. [Google Scholar] [CrossRef]
- Kazmerski, L.L.; Sanborn, G.A. CuInS2 thin-film homojunction solar cells. J. Appl. Phys. 1977, 48, 3178–3180. [Google Scholar] [CrossRef]
- Siemer, K.; Klaer, J.; Luck, I.; Bruns, J.; Klenk, R.; Bräunig, D. Efficient CuInS2 solar cells from a rapid thermal process (RTP). Sol. Energy Mater. Sol. Cells 2001, 67, 159–166. [Google Scholar] [CrossRef]
- Braunger, D.; Hariskos, D.; Bilger, G.; Rau, U.; Schock, H.W. Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films. Thin Solid Films 2000, 361–362, 161–166. [Google Scholar] [CrossRef]
- Scheer, R.; Walter, T.; Schock, H.W.; Fearheiley, M.L.; Lewerenz, H.J. CuInS2 based thin film solar cell with 10.2% efficiency. Appl. Phys. Lett. 1993, 63, 3294–3296. [Google Scholar] [CrossRef]
- Miles, R.W.; Reddy, K.R.; Forbes, I. Formation of polycrystalline thin films of CuInS2 by a two step process. J. Cryst. Growth 1999, 198, 316–320. [Google Scholar] [CrossRef]
- Nakamura, S.; Yamamoto, A. Electrodeposited CuInS2-based thin-film solar cells. Sol. Energy Mater. Sol. Cells 2003, 75, 81–86. [Google Scholar] [CrossRef]
- Oja, I.; Nanu, M.; Katerski, A.; Krunks, M.; Mere, A.; Raudoja, J.; Goossens, A. Crystal quality studies of CuInS2 films prepared by spray pyrolysis. Thin Solid Films 2005, 480–481, 82–86. [Google Scholar] [CrossRef]
- Camus, C.; Allsop, N.A.; Gledhill, S.E.; Bohne, W.; Röhrich, J.; Lauermann, I.; Lux-Steiner, M.C.; Fischer, C.-H. Properties of Spray ILGAR CuInS2 thin films. Thin Solid Films 2008, 516, 7026–7030. [Google Scholar] [CrossRef]
- Harris, J.D.; Banger, K.K.; Scheiman, D.A.; Smith, M.A.; Jin, M.H.-C.; Hepp, A.F. Characterization of CuInS2 films prepared by atmospheric pressure spray chemical vapor deposition. Mater. Sci. Eng. B 2003, 98, 150–155. [Google Scholar] [CrossRef]
- Nanu, M.; Reijnen, L.; Meester, B.; Schoonman, J.; Goossens, A. CuInS2 Thin Films Deposited by ALD. Chem. Vap. Depos. 2004, 10, 45–49. [Google Scholar] [CrossRef]
- Schneider, N.; Bouttemy, M.; Genevée, P.; Lincot, D.; Donsanti, F. Deposition of ultra thin CuInS2 absorber layers by ALD for thin film solar cells at low temperature (down to 150 °C). Nanotechnology 2015, 26, 054001. [Google Scholar] [CrossRef] [PubMed]
- Thimsen, E.; Riha, S.C.; Baryshev, S.V.; Martinson, A.B.F.; Elam, J.W.; Pellin, M.J. Atomic Layer Deposition of the Quaternary Chalcogenide Cu2ZnSnS4. Chem. Mater. 2012, 24, 3188–3196. [Google Scholar] [CrossRef]
- Schneider, N.; Frégnaux, M.; Bouttemy, M.; Donsanti, F.; Etcheberry, A.; Lincot, D. Gallium-containing sulfide binary and ternary materials by atomic layer deposition: precursor reactivities and growth fine chemistries. Mater. Today Chem. 2018, 10, 142–152. [Google Scholar] [CrossRef]
- Thimsen, E.; Peng, Q.; Martinson, A.B.F.; Pellin, M.J.; Elam, J.W. Ion Exchange in Ultrathin Films of Cu2S and ZnS under Atomic Layer Deposition Conditions. Chem. Mater. 2011, 23, 4411–4413. [Google Scholar] [CrossRef]
- Donsanti, F.; Genevée, P.; Schneider, N.; Jubault, M.; Lincot, D. Deposition of Ultra Thin CuInS2 Absorber Layers by ALD for Thin Film Solar Cells. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition (27th EU PVSEC), Frankfurt, Germany, 24–28 September 2012; pp. 2324–2328. [Google Scholar] [CrossRef]
- Yousfi, E.B.; Weinberger, B.; Donsanti, F.; Cowache, P.; Lincot, D. Atomic layer deposition of zinc oxide and indium sulfide layers for Cu(In, Ga)Se2 thin-film solar cells. Thin Solid Films 2001, 387, 29–32. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Kim, J.Y.; Goldstein, D.N.; Neale, N.R.; Zhu, K.; Elliott, C.M.; Frank, A.J.; George, S.M. In2S3 Atomic Layer Deposition and Its Application as a Sensitizer on TiO2 Nanotube Arrays for Solar Energy Conversion. J. Phys. Chem. C 2010, 114, 8032–8039. [Google Scholar] [CrossRef]
- Genevée, P.; Donsanti, F.; Schneider, N.; Lincot, D. Atomic layer deposition of zinc indium sulfide films: Mechanistic studies and evidence of surface exchange reactions and diffusion processes. J. Vac. Sci. Technol. Vac. Surf. Films 2013, 31, 01A131. [Google Scholar] [CrossRef]
- Sønsteby, H.H.; Bratvold, J.E.; Weibye, K.; Fjellvåg, H.; Nilsen, O. Phase Control in Thin Films of Layered Cuprates. Chem. Mater. 2018, 30, 1095–1101. [Google Scholar] [CrossRef]
- Amlouk, M.; Said, M.B.; Kamoun, N.; Belgacem, S.; Brunet, N.; Barjon, D. Acoustic properties of β-In2S3 thin films prepared by spray. Jpn. J. Appl. Phys. 1999, 38, 26. [Google Scholar] [CrossRef]
- Genevée, P. Synthèse de Couches Minces à base de Sulfures et D’oxydes par Dépôt Chimique en Phase Vapeur à Flux alternés (ALCVD) pour Applications Photovoltaïques dans les Cellules à base de Disélénure de Cuivre, D’indium et de Gallium (CIGS); Université Pierre et Marie Curie (UPMC): Paris, France, 2012. [Google Scholar]
- Sterner, J.; Malmström, J.; Stolt, L. Study on ALD In2S3/Cu(In,Ga)Se2 interface formation. Prog. Photovolt. Res. Appl. 2005, 13, 179–193. [Google Scholar] [CrossRef]
- Bugot, C. Elaboration d’oxydes et de sulfures à grande bande interdite pour les cellules photovoltaïques à base de Cu(In,Ga)Se2 par dépôt chimique en phase vapeur par flux alternés (ALD) activé par plasma; Université Pierre et Marie Curie (UPMC): Paris, France, 2015; Available online: https://core.ac.uk/download/pdf/46808406.pdf (accessed on 1 February 2020).
- Schneider, N.; Lincot, D.; Donsanti, F. Atomic Layer Deposition of copper sulfide thin films. Thin Solid Films 2016, 600, 103–108. [Google Scholar] [CrossRef]
- Martinson, A.B.F.; Elam, J.W.; Pellin, M.J. Atomic layer deposition of Cu2S for future application in photovoltaics. Appl. Phys. Lett. 2009, 94, 123107. [Google Scholar] [CrossRef]
- Riha, S.C.; Jin, S.; Baryshev, S.V.; Thimsen, E.; Wiederrecht, G.P.; Martinson, A.B.F. Stabilizing Cu2S for Photovoltaics One Atomic Layer at a Time. ACS Appl. Mater. Interfaces 2013, 5, 10302–10309. [Google Scholar] [CrossRef] [PubMed]
- Agbenyeke, R.E.; Park, B.K.; Chung, T.-M.; Kim, C.G.; Han, J.H. Growth of Cu2S thin films by atomic layer deposition using Cu(dmamb)2 and H2S. Appl. Surf. Sci. 2018, 456, 501–506. [Google Scholar] [CrossRef]
- Logiciel, H.S.C. Growth of Cu2S thin films by atomic layer deposition using Cu(dmamb)2 and H2S; Chemistry, Outokumpu Research Oy: Pori, Finland, 2015. [Google Scholar]
- Thimsen, E.; Baryshev, S.V.; Martinson, A.B.; Elam, J.W.; Veryovkin, I.V.; Pellin, M.J. Interfaces and composition profiles in metal–sulfide nanolayers synthesized by atomic layer deposition. Chem. Mater. 2013, 25, 313–319. [Google Scholar] [CrossRef]
- Riha, S.C.; Koegel, A.A.; Emery, J.D.; Pellin, M.J.; Martinson, A.B.F. Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics. ACS Appl. Mater. Interfaces 2017, 9, 4667–4673. [Google Scholar] [CrossRef]
- Rocklein, M.N.; George, S.M. Temperature-Induced Apparent Mass Changes Observed during Quartz Crystal Microbalance Measurements of Atomic Layer Deposition. Anal. Chem. 2003, 75, 4975–4982. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, X.; Kim, S.B.; Schelhas, L.T.; Lou, X.; Gordon, R.G. Atomic layer deposition of cubic tin–calcium sulfide alloy films. J. Mater. Res. 2019, 1–9. [Google Scholar] [CrossRef]
- Muneshwar, T.; Cadien, K. AxBAxB… pulsed atomic layer deposition: Numerical growth model and experiments. J. Appl. Phys. 2016, 119, 085306. [Google Scholar] [CrossRef]
- Golchoubian, H. Redetermination of Crystal Structure of Bis (2, 4- pentanedionato) copper (II). Asian J. Chem. 2008, 20, 5834. [Google Scholar]
- Hu, X.; Schuster, J.; Schulz, S.E.; Gessner, T. Simulation of ALD chemistry of (nBu3P)2Cu(acac) and Cu(acac)2 precursors on Ta(110) surface. Microelectron. Eng. 2015, 137, 23–31. [Google Scholar] [CrossRef]
Experiment | Substrate (Estimated Thickness) | PRECURSOR(s) Pulsed Sequentially | TREACTOR |
---|---|---|---|
#1 | Al2O3 (100 Å) | In(acac)3/H2S | 180 °C |
#2 | Al2O3 (500 Å) | Cu(acac)2/H2S | 160 °C |
#3 | CuxS (95 Å) | In(acac)3/H2S | 180 °C |
#4 | In2S3 (23 Å) | Cu(acac)2/H2S | 160 °C |
#5 | In2S3 (50 Å) | Cu(acac)2/H2S | 160 °C |
#6 | In2S3 (250 Å) | Cu(acac)2/H2S | 160 °C |
#7 | In2S3 (22 Å) | Cu(acac)2 | 160 °C |
#8 | In2S3 (250 Å) | Cu(acac)2 | 160 °C |
k | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Rs | 0.32 | 0.41 | 0.55 | 0.83 | 1.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Tulzo, H.; Schneider, N.; Donsanti, F. In Situ Microgravimetric Study of Ion Exchanges in the Ternary Cu-In-S System Prepared by Atomic Layer Deposition. Materials 2020, 13, 645. https://doi.org/10.3390/ma13030645
Le Tulzo H, Schneider N, Donsanti F. In Situ Microgravimetric Study of Ion Exchanges in the Ternary Cu-In-S System Prepared by Atomic Layer Deposition. Materials. 2020; 13(3):645. https://doi.org/10.3390/ma13030645
Chicago/Turabian StyleLe Tulzo, Harold, Nathanaelle Schneider, and Frédérique Donsanti. 2020. "In Situ Microgravimetric Study of Ion Exchanges in the Ternary Cu-In-S System Prepared by Atomic Layer Deposition" Materials 13, no. 3: 645. https://doi.org/10.3390/ma13030645
APA StyleLe Tulzo, H., Schneider, N., & Donsanti, F. (2020). In Situ Microgravimetric Study of Ion Exchanges in the Ternary Cu-In-S System Prepared by Atomic Layer Deposition. Materials, 13(3), 645. https://doi.org/10.3390/ma13030645