Effects of Heating Temperature on the Properties of Bio-Board Manufactured by Using Soybean Straw
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Process of Manufacturing Board
2.2. Thermogravimetric Analysis
2.3. Spectroscopic Analysis
2.4. Scanning Electron Microscopy Analysis
2.5. The Test for Mechanical Properties
2.6. The Test for Dimensional Stability
2.7. Statistical Analysis
3. Results and Discussion
3.1. Thermal Properties
3.2. Functional Group Analysis
3.3. SEM Analysis
3.4. The Physical Properties of Bio-Board
3.5. The Mechanical Properties of Bio-Board
3.6. The Dimensional Stability Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, X.; Li, Y.; Zhong, Z.; Wang, D.; Ratto, J.A.; Sheng, K.; Sun, X.S. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive. Bioresour. Technol. 2009, 100, 3556–3562. [Google Scholar] [CrossRef] [PubMed]
- Kim, S. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission. Bioresour. Technol. 2009, 100, 744–748. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT, F.A.O. 2019, FAOSTAT statistical database. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 18 January 2019).
- Cabrera, E.; Muñoz, M.J.; Martín, R.; Caro, I.; Curbelo, C.; Díaz, A.B. Comparison of industrially viable pretreatments to enhance soybean straw biodegradability. Bioresour. Technol. 2015, 194, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Yang, Y. Natural cellulose fibers from soybean straw. Bioresour. Technol. 2009, 100, 3593–3598. [Google Scholar] [CrossRef] [PubMed]
- Hubbe, M.A. Bonding between cellulosic fibers in the absence and presence of dry-strength agents–A review. BioResources 2006, 1, 281–318. [Google Scholar]
- Geng, X.; Zhang, S.Y.; Deng, J. Alkaline treatment of black spruce bark for the manufacture of binderless fiberboard. J. Wood Chem. Technol. 2006, 26, 313–324. [Google Scholar] [CrossRef]
- Kusumah, S.S.; Umemura, K.; Yoshioka, K.; Miyafuji, H.; Kanayama, K. Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard I: Effects of pre-drying treatment and citric acid content on the board properties. Ind. Crop. Prod. 2016, 84, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Henao, E.M.; Quintana, G.C.; Ogunsile, B.O. Development of binderless fiberboards from steam-exploded and oxidized oil palm wastes. BioResources 2014, 9, 2922–2936. [Google Scholar]
- Halvarsson, S.; Edlund, H.; Norgren, M. Manufacture of non-resin wheat straw fibreboards. Ind. Crop. Prod. 2009, 29, 437–445. [Google Scholar] [CrossRef]
- Li, X.; Cai, Z.; Horn, E.; Winandy, J.E. Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard. Holzforschung 2011, 65, 737–741. [Google Scholar] [CrossRef]
- Euring, M.; Rühl, M.; Ritter, N.; Kües, U.; Kharazipour, A. Laccase mediator systems for eco-friendly production of medium-density fiberboard (MDF) on a pilot scale: Physicochemical analysis of the reaction mechanism. Biotechnol. J. 2011, 6, 1253–1261. [Google Scholar] [CrossRef]
- Zhu, X.; Han, S.; Liu, Y.; Chen, G. Effects of laccase incubated from white rot fungi on the mechanical properties of fiberboard. J. For. Res. 2017, 28, 1293–1300. [Google Scholar] [CrossRef]
- Nasir, M.; Gupta, A.; Beg, M.D.H.; Chua, G.K.; Jawaid, M.; Kumar, A.; Khan, T.A. Fabricating eco-friendly binderless fiberboard from laccase-treated rubber wood fiber. BioResources 2013, 8, 3599–3608. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Mohanty, A.K.; Erickson, L.; Misra, M. Lignin and its applications with polymers. J. Biobased Mater. Bioenergy 2009, 3, 1–24. [Google Scholar] [CrossRef]
- Anglès, M.N.; Ferrando, F.; Farriol, X.; Salvadó, J. Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition. Biomass Bioenerg. 2001, 21, 211–224. [Google Scholar] [CrossRef]
- Domínguez-Robles, J.; Tarrés, Q.; Delgado-Aguilar, M.; Rodríguez, A.; Espinach, F.X.; Mutjé, P. Approaching a new generation of fiberboards taking advantage of self lignin as green adhesive. Int. J. Biol. Macromol. 2018, 108, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Tang, L.; Zhang, W.; Lv, C.; Zheng, F.; Zhang, R.; Du, G.B.; Tang, B.J.; Liu, X. Enzymatic hydrolysis lignin derived from corn stover as an intrinstic binder for bio-composites manufacture: Effect of fiber moisture content and pressing temperature on boards’properties. BioResources 2011, 6, 253–264. [Google Scholar]
- Okuda, N.; Hori, K.; Sato, M. Chemical changes of kenaf core binderless boards during hot pressing (I): Influence of the pressing temperature condition. J. Wood Sci. 2006, 52, 244–248. [Google Scholar] [CrossRef]
- Hashim, R.; Said, N.; Lamaming, J.; Baskaran, M.; Sulaiman, O.; Sato, M.; Sugimoto, T. Influence of press temperature on the properties of binderless particleboard made from oil palm trunk. Mater. Des. 2011, 32, 2520–2525. [Google Scholar] [CrossRef]
- Salvadó, J.; Velásquez, J.A.; Ferrando, F. Binderless fiberboard from steam exploded Miscanthus sinensis: Optimization of pressing and pretreatment conditions. Wood Sci. Technol. 2003, 37, 279–286. [Google Scholar]
- Wang, B.; Li, D.L.; Chen, T.Y.; Qin, Z.Y.; Peng, W.X.; Wen, J.L. Understanding the mechanism of self-bonding of bamboo binderless boards: Investigating the structural changes of lignin macromolecule during the molding pressing process. BioResources 2017, 12, 514–532. [Google Scholar] [CrossRef] [Green Version]
- Japanese Industrial Standards. JIS A. 5908: Particleboards. Tokyo, Japan, 2003.
- Macedo, J.S.; Otubo, L.; Ferreira, O.P.; de Fátima Gimenez, I.; Mazali, I.O.; Barreto, L.S. Biomorphic activated porous carbons with complex microstructures from lignocellulosic residues. Microporous Mesoporous Mat. 2008, 107, 276–285. [Google Scholar] [CrossRef]
- Gurung, M.; Adhikari, B.B.; Kawakita, H.; Ohto, K.; Inoue, K.; Alam, S. Selective recovery of precious metals from acidic leach liquor of circuit boards of spent mobile phones using chemically modified persimmon tannin gel. Ind. Eng. Chem. Res. 2012, 51, 11901–11913. [Google Scholar] [CrossRef]
- Figen, A.K.; Terzi, E.; Yilgör, N.; Kartal, S.N.; Piskin, S. Thermal degradation characteristic of Tetra Pak panel boards under inert atmosphere. Korean J. Chem. Eng. 2013, 30, 878–890. [Google Scholar] [CrossRef]
- Junior, C.P.A.; Coaquira, C.A.C.; Mattos, A.L.A.; de Souza, M.D.S.M.; de Andrade Feitosa, J.P.; de Morais, J.P.S.; de Freitas Rosa, M. Binderless fiberboards made from unripe coconut husks. Waste Biomass Valorization 2018, 9, 2245–2254. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Mamun, A.A.; Volk, J. Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 480–488. [Google Scholar] [CrossRef]
- Ramos, D.; El Mansouri, N.E.; Ferrando, F.; Salvadó, J. All-lignocellulosic Fiberboard from Steam Exploded Arundo Donax L. Molecules 2018, 23, 2088. [Google Scholar] [CrossRef] [Green Version]
- Jakes, J.E.; Hunt, C.G.; Zelinka, S.L.; Ciesielski, P.N.; Plaza, N.Z. Effects of Moisture on Diffusion in Unmodified Wood Cell Walls: A Phenomenological Polymer Science Approach. Forests 2019, 10, 1084. [Google Scholar] [CrossRef] [Green Version]
- Stelte, W.; Clemons, C.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B.; Sanadi, A.R. Thermal transitions of the amorphous polymers in wheat straw. Ind. Crops Prod. 2011, 34, 1053–1056. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Wang, X.; Kito, K. Effects of Heating Temperature on the Properties of Bio-Board Manufactured by Using Soybean Straw. Materials 2020, 13, 662. https://doi.org/10.3390/ma13030662
Song X, Wang X, Kito K. Effects of Heating Temperature on the Properties of Bio-Board Manufactured by Using Soybean Straw. Materials. 2020; 13(3):662. https://doi.org/10.3390/ma13030662
Chicago/Turabian StyleSong, Xiaowen, Xiulun Wang, and Koji Kito. 2020. "Effects of Heating Temperature on the Properties of Bio-Board Manufactured by Using Soybean Straw" Materials 13, no. 3: 662. https://doi.org/10.3390/ma13030662
APA StyleSong, X., Wang, X., & Kito, K. (2020). Effects of Heating Temperature on the Properties of Bio-Board Manufactured by Using Soybean Straw. Materials, 13(3), 662. https://doi.org/10.3390/ma13030662