Fiber-Reinforced Cemented Paste Backfill: The Effect of Fiber on Strength Properties and Estimation of Strength Using Nonlinear Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Characterization
2.2. Specimen Preparation and Test Method
3. Results and Discussion
3.1. The Effect of the PP Fiber on the UCS of CPB with Cement Less Than 13 wt.%
3.2. The Effect of Cement on the UCS
3.3. Estimating the UCSfiber-reinforced with the UCSunreinforced
3.4. Fiber Parameters’ Effect on the UCS of CPB with Cement Less Than 13 wt.%
3.5. Estimation of the UCSfiber-reinforced Based on Composite Mechanics
3.6. Economic and Application Analysis
4. Conclusions
- (1)
- The CPB prepared with a lower amount of cement in this study had a lower UCS, and the UCS of the unreinforced CPB was lower than 0.4 MPa. The UCS of CPB was improved significantly but did not exceed 1.0 MPa. Besides, increasing the cement content could effectively improve the strength of the CPB, and the fiber and cement played complementary roles in enhancing the strength of the CPB.
- (2)
- In this study, the expansion of CPB caused by sulfate attack due to the fibers resulted in the material not being able to fully exert its pressure resistance effect after 3 days of curing. The macroscopic failure modes indicated that the fibers could prevent the formation of large tensile cracks and shear cracks. The SEM tests further showed that the fibers mainly enhanced the UCS of the CPB with pull-out and pull-off failure modes.
- (3)
- The linear and polynomial fitting function could characterize the relationship between the UCS of the fiber-reinforced and unreinforced CPB at the three different curing ages. The nonlinear UCS estimation equation of the fiber-reinforced CPB based on composite mechanics could reliably be used to estimate the UCS and more clearly quantify the reinforcement effect of the fibers with fiber reinforcement index λ.
- (4)
- Both estimation results indicated that the UCS of CPB could be estimated accurately. Furthermore, the high fiber reinforcement index λ value indicated that fibers played a more fully reinforcing role at 3 day curing age.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Fang, Z.Y.; Qi, C.C.; Zhang, B.; Guo, L.J.; Song, K. Numerical study on the pipe flow characteristics of the cemented paste backfill slurry considering hydration effects. Powder Technol. 2019, 343, 454–464. [Google Scholar] [CrossRef]
- Chen, X.; Shi, X.Z.; Zhou, J.; Chen, Q.S.; Yang, C. Feasibility of Recycling Ultrafine Leaching Residue by Backfill: Experimental and CFD Approaches. Mineals 2017, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.S.; Zhang, Q.L.; Fourie, A.; Chen, X.; Qi, C.C. Experimental investigation on the strength characteristics of cement paste backfill in a similar stope model and its mechanism. Constr. Build. Mater. 2017, 154, 34–43. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Chen, Q.S.; Shi, X.Z.; Gou, Y.G. CFD Simulation of Pipeline Transport Properties of Mine Tailings Three-Phase Foam Slurry Backfill. Mineals 2017, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Shi, X.Z.; Zhou, J.; Du, X.H.; Chen, Q.S.; Qiu, X.Y. Effect of overflow tailings properties on cemented paste backfill. J. Environ. Manag. 2019, 235, 133–144. [Google Scholar] [CrossRef]
- Kesimal, A.; Yilmaz, E.; Ercikdi, B.; Alp, I.; Deveci, H. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill. Mater. Lett. 2005, 59, 3703–3709. [Google Scholar] [CrossRef]
- Liu, L.; Fang, Z.Y.; Qi, C.C.; Zhang, B.; Guo, L.J.; Song, K. Experimental investigation on the relationship between pore characteristics and unconfined compressive strength of cemented paste backfill. Constr. Build. Mater. 2018, 179, 254–264. [Google Scholar] [CrossRef]
- Koohestani, B.; Koubaa, A.; Belem, T.; Bussière, B.; Bouzahzah, H. Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler. Constr. Build. Mater. 2016, 121, 222–228. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mohamad, E.T.; Momeni, E.; Monjezi, M.; Narayanasamy, M.S. Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab. J. Geosci. 2016, 9, 48. [Google Scholar] [CrossRef]
- Yilmaz, E.; Belem, T.; Bussière, B.; Benzaazoua, M. Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills. Cement Concr. Compos. 2011, 33, 702–715. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mohamad, E.T.; Momeni, E.; Narayanasamy, M.S. An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull. Eng. Geol. Environ. 2015, 74, 1301–1319. [Google Scholar] [CrossRef]
- Deng, D.Q.; Liu, L.; Yao, Z.L.; Song, K.I.I.L.; Lao, D.Z. A practice of ultra-fine tailings disposal as filling material in a gold mine. J. Environ. Manag. 2017, 196, 100–109. [Google Scholar] [CrossRef]
- Ercikdi, B.; Cihangir, F.; Kesimal, A.; Deveci, H.; Alp, I. Effect of natural pozzolans as mineral admixture on the performance of cemented-paste backfill of sulphide-rich tailings. Waste Manag. Res. 2010, 28, 430–435. [Google Scholar] [CrossRef]
- Cihangir, F.; Ercikdi, B.; Kesimal, A.; Turan, A.; Deveci, H. Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: effect of binder type and dosage. Miner. Eng. 2012, 30, 33–43. [Google Scholar] [CrossRef]
- Wu, D.; Sun, G.H.; Liu, Y.C. Modeling the thermo-hydro-chemical behavior of cemented coal gangue-fly ash backfill. Constr. Build. Mater. 2016, 111, 522–528. [Google Scholar] [CrossRef]
- Chen, Q.S.; Zhang, Q.L.; Fourie, A.; Chen, X. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill. J. Environ. Manag. 2017, 201, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.K.; Zhang, Q.L.; Chen, Q.L.; Qi, C.C.; Su, Z.; Huang, Z.D. Utilisation of water-washing pre-treated phosphogypsum for cemented paste backfill. Mineals 2019, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Hou, Y.B.; Deng, T.F.; Chen, Y.Z.; Zhao, X.L. Thermal, hydraulic and mechanical performances of cemented coal gangue-fly ash backfill. Int. J. Miner. Process. 2017, 162, 12–18. [Google Scholar] [CrossRef]
- Qian, C.X.; Stroeven, P. Development of hybrid polypropylene-steel fibre-reinforced concrete. Cement Concrete Res. 2000, 30, 63–69. [Google Scholar] [CrossRef]
- Saadatmanesh, H. Fiber composites for new and existing structures. ACI Struct. J. 1994, 91, 346–354. [Google Scholar]
- Ramesh, K.; Seshu, D.R.; Prabhakar, M. Constitutive behavior of confined fibre reinforced concrete under axial compression. Cement Concr. Compos. 2003, 25, 343–350. [Google Scholar] [CrossRef]
- Xie, T.Y.; Togay, O. Behavior of steel fiber-reinforced high-strength concrete-filled FRP tube columns under axial compression. Eng. Struct. 2015, 90, 158–171. [Google Scholar] [CrossRef]
- Yilmaz, Y. Compaction and strength characteristics of fly ash and fiber amended clayey soil. Eng. Geol. 2015, 188, 168–177. [Google Scholar] [CrossRef]
- Cai, Y.; Shi, B.; Ng, C.W.W.; Tang, C.S. Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Eng. Geol. 2006, 87, 230–240. [Google Scholar] [CrossRef]
- Wang, Y.X.; Guo, P.P.; Shan, S.B.; Yuan, H.P.; Yuan, B.X. Study on Strength Influence Mechanism of Fiber-Reinforced Expansive Soil Using Jute. Geotech. Geol. Eng. 2016, 34, 1079–1088. [Google Scholar]
- Tang, C.S.; Shi, B.; Gao, W.; Chen, F.J.; Cai, Y. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotext. Geomembr. 2007, 25, 194–202. [Google Scholar] [CrossRef]
- Cristelo, N.; Cunha, V.M.C.F.; Dias, M.; Gomes, A.T.; Miranda, T.; Araujo, N. Influence of discrete fiber reinforcement on the uniaxial compression response and seismic wave velocity of a cement-stabilised sandy-clay. Geotext. Geomembr. 2015, 43, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Toutanji, H.A. Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Constr. Build. Mater. 1999, 13, 171–177. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Stone, D.M. Stability of reinforced cemented backfills. Can. Geotech. J. 1987, 24, 189–197. [Google Scholar] [CrossRef]
- Zou, D.H.; Sahito, W. Suitability of mine tailings for shotcrete as a ground support. Can. J. Civ. Eng. 2004, 31, 632–636. [Google Scholar] [CrossRef]
- Yi, X.W.; Ma, G.W.; Fourie, A. Compressive behaviour of fibre-reinforced cemented paste backfill. Geotext. Geomembr. 2015, 43, 207–215. [Google Scholar] [CrossRef]
- Chen, X.; Shi, X.Z.; Zhou, J.; Chen, Q.S.; Li, E.M.; Du, X.H. Compressive behavior and microstructural properties of tailings polypropylene fibre-reinforced cemented paste backfill. Constr. Build. Mater. 2018, 190, 211–221. [Google Scholar] [CrossRef]
- Chi, Y.; Xu, L.H.; Yu, H.S. Plasticity model for hybrid fiber-reinforced concrete under true triaxial compression. J. Eng. Mech. 2013, 140, 393–405. [Google Scholar] [CrossRef]
- Chi, Y.; Xu, L.H.; Zhang, Y.Y. Experimental study on hybrid fiber–reinforced concrete subjected to uniaxial compression. J. Mater. Civ. Eng. 2012, 26, 211–218. [Google Scholar] [CrossRef]
- Zhang, Z.C. Experimental Study on Constitutive Relation of Steel Fiber Reinforced Concrete under Uniaxial Compression. Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2017. (In Chinese). [Google Scholar]
- Ercikdi, B.; Baki, H.; İzki, M. Effect of desliming of sulphide-rich mill tailings on the long- term strength of cemented paste backfill. J. Environ. Manag. 2013, 115, 5–13. [Google Scholar] [CrossRef] [PubMed]
- GB/T 50123-2019. Standard for geotechnical testing method. Available online: http://www.doc88.com/p-9562945560902 (accessed on 4 February 2020).
- Li, X.J.; Hao, J.Y. Orthogonal test design for optimization of synthesis of super early strength anchoring material. Constr. Build. Mater. 2018, 181, 42–48. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Sun, Y.; Infield, D.; Zhao, Y.; Han, S.; Yan, J. A hybrid forecasting method for wind power ramp based on orthogonal test and support vector machine (OT-SVM). IEEE Trans. Sustain. Energy 2016, 8, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Li, X.B.; Du, J.; Gao, L.; He, S.Y.; Gan, L.; Sun, C.; Shi, Y. Immobilization of phosphogypsum for cemented paste backfill and its environmental effect. J. Clean. Prod. 2017, 156, 137–146. [Google Scholar] [CrossRef]
- Wu, Y.F.; Zhao, H.X.; Zhang, C.Q.; Wang, L.; Han, J.T. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test. Energy 2018, 151, 79–93. [Google Scholar] [CrossRef]
- Cao, S.; Song, W.D.; Yilmaz, E. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill. Constr. Build. Mater. 2018, 174, 190–201. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.B.; Mitri, H.S. Classification of rockburst in underground projects: comparison of ten supervised learning methods. J. Comput. Civ. Eng. 2016, 30, 04016003. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.M.; Yang, S.; Wang, M.Z.; Shi, X.Z.; Yao, S.; Mitri, H.S. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf. Sci. 2019, 118, 505–518. [Google Scholar] [CrossRef]
- Qi, C.C.; Fourie, A.; Chen, Q.S.; Zhang, Q.L. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J. Clean. Prod. 2018, 183, 566–578. [Google Scholar] [CrossRef]
- ACI 229R-13. Controlled Low-strength Materials (CLSM). Available online: http://materialstandard.com/wp-content/uploads/2019/07/ACI-229R-13 (accessed on 3 February 2020).
- Ling, T.C.; Kaliyavaradhan, S.K.; Poon, C.S. Global perspective on application of controlled low-strength material (CLSM) for trench backfilling–An overview. Constr. Build. Mater. 2018, 158, 535–548. [Google Scholar] [CrossRef]
- Kaliyavaradhan, S.K.; Ling, T.C.; Guo, M.Z.; Mo, K.H. Waste resources recycling in controlled low-strength material (CLSM): A critical review on plastic properties. J. Environ. Manag. 2019, 241, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C.; Fall, M. Sulphate effect on the early age strength and self-desiccation of cemented paste backfill. Constr. Build. Mater. 2016, 106, 296–304. [Google Scholar] [CrossRef]
- ACI 544. State-of-the Art Report on Fiber Reinforced Concrete. Available online: http://indiafiber.com/Files/ACI%20report (accessed on 3 February 2020).
- Brandt, A.M. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 2008, 86, 3–9. [Google Scholar] [CrossRef]
- Qi, C.C.; Fourie, A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner. Eng. 2019, 144, 106025. [Google Scholar] [CrossRef]
- Su, Z.; Chen, Q.S.; Zhang, Q.L.; Zhang, D.M. Recycling Lead-Zinc Tailings, for Cemented Paste Backfill and Stabilisation of Excessive Metal. Mineals 2019, 9, 710. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Chen, Q.S.; Qi, C.C.; Zhang, Q.L.; Xiao, C.C. Lithium slag and fly ash-based binder for cemented fine tailings backfill. J. Environ. Manag. 2019, 248, 109282. [Google Scholar] [CrossRef] [PubMed]
Material | Property | Value | Unit |
---|---|---|---|
Tailings | Bulk Density (ρ) | 1.28 | t/m3 |
Particle Density (ρs) | 3.34 | t/m3 | |
Osmotic Coefficient (K) | 3.10e-06 | cm/s | |
D50 | 25.31 | µm | |
Uniformity Coefficient (Cu 1) | 10.30 | - | |
Curvature Coefficient (Cc 2) | 0.91 | - | |
SiO2 | 27.10 | % | |
Al2O3 | 9.11 | % | |
Fe2O3 | 23.70 | % | |
MgO | 1.40 | % | |
CaO | 22.60 | % | |
K2O | 2.19 | % | |
S2− | 11.90 | % | |
Polypropylene fiber | Density | 910 | kg/m3 |
Shape | Fascicular monofilament | - | |
Dispersion | Good | - |
Mixture | Cement Content (A) 1 (wt.%) | Solid Mass Concentration (B) 2 (wt.%) | Fiber Content (C) 3 (vol.%) | Fiber Length (D) (mm) |
---|---|---|---|---|
T1 | 13 | 60 | 0.05 | 3 |
T2 | 13 | 62 | 0.11 | 6 |
T3 | 13 | 64 | 0.16 | 9 |
T4 | 13 | 66 | 0.22 | 12 |
T5 | 10 | 60 | 0.11 | 9 |
T6 | 10 | 62 | 0.05 | 12 |
T7 | 10 | 64 | 0.22 | 3 |
T8 | 10 | 66 | 0.16 | 6 |
T9 | 8 | 60 | 0.16 | 12 |
T10 | 8 | 62 | 0.22 | 9 |
T11 | 8 | 64 | 0.05 | 6 |
T12 | 8 | 66 | 0.11 | 3 |
T13 | 7 | 60 | 0.22 | 6 |
T14 | 7 | 62 | 0.16 | 3 |
T15 | 7 | 64 | 0.11 | 12 |
T16 | 7 | 66 | 0.05 | 9 |
Curing Age | Level | Cement Content (A) 1 (wt.%) | Solid Mass Concentration (B) 2 (wt.%) | Fiber Content (C) 3 (vol.%) | Fiber Length (D) (mm) |
---|---|---|---|---|---|
3 Days | k1 | 0.630 | 0.352 | 0.532 | 0.380 |
k2 | 0.395 | 0.357 | 0.340 | 0.427 | |
k3 | 0.363 | 0.492 | 0.367 | 0.458 | |
k4 | 0.370 | 0.555 | 0.518 | 0.492 | |
Rj | 0.267 | 0.203 | 0.192 | 0.112 | |
Significance | A>B>C>D | ||||
7 Days | k1 | 0.370 | 0.255 | 0.355 | 0.277 |
k2 | 0.287 | 0.250 | 0.278 | 0.335 | |
k3 | 0.285 | 0.318 | 0.297 | 0.323 | |
k4 | 0.307 | 0.427 | 0.320 | 0.315 | |
Rj | 0.085 | 0.177 | 0.077 | 0.058 | |
Significance | B>A>C>D | ||||
28 Days | k1 | 0.455 | 0.245 | 0.322 | 0.370 |
k2 | 0.427 | 0.340 | 0.342 | 0.380 | |
k3 | 0.328 | 0.383 | 0.355 | 0.307 | |
k4 | 0.227 | 0.470 | 0.418 | 0.380 | |
Rj | 0.228 | 0.225 | 0.096 | 0.073 | |
Significance | A>B>C>D |
Curing Age | Fitting Method | Fitting Formula | R2 |
---|---|---|---|
3 days | Linear | σfiber = 1.7779 × σno-fiber + 0.2357 | 0.5849 |
Logarithmic | σfiber = 0.6271 × ln(σno-fiber) + 1.6316 | 0.6200 | |
Polynomial | σfiber = −1.6529 × (σno-fiber)2 + 3.3925 × σno-fiber − 0.0317 | 0.6331 | |
Power | σfiber = 2.1171 × (σno-fiber)0.8580 | 0.6405 | |
7 days | Linear | σfiber = 1.0406 × σno-fiber + 0.1321 | 0.8969 |
Logarithmic | σfiber = 0.4979 × ln(σno-fiber) + 1.1287 | 0.8523 | |
Polynomial | σfiber = −0.3319 × (σno-fiber)2 + 1.5000 × σno-fiber + 0.0365 | 0.9086 | |
Power | σfiber = 1.1785 × (σno-fiber)0.8067 | 0.9009 | |
28 days | Linear | σfiber = 1.2484 × σno-fiber + 0.2131 | 0.8676 |
Logarithmic | σfiber = 0.6835 × ln(σno-fiber) + 1.5405 | 0.7906 | |
Polynomial | σfiber = −0.2487 × (σno-fiber)2 + 1.6945 × σno-fiber + 0.1110 | 0.8766 | |
Power | σfiber = 1.5213 × (σno-fiber)0.8262 | 0.7297 |
CPB Sets | V1 (%) | l/d2 | λ3 | CPB Sets | V1 (%) | l/d2 | λ3 |
---|---|---|---|---|---|---|---|
1 | 0.11 | 157.89 | 0.17 | 17 | 0.05 | 157.89 | 0.09 |
2 | 0.22 | 315.79 | 0.69 | 18 | 0.11 | 315.79 | 0.35 |
3 | 0.33 | 473.68 | 1.56 | 19 | 0.16 | 473.68 | 0.78 |
4 | 0.44 | 631.58 | 2.78 | 20 | 0.22 | 631.58 | 1.39 |
5 | 0.22 | 473.68 | 1.04 | 21 | 0.11 | 473.68 | 0.52 |
6 | 0.11 | 631.58 | 0.69 | 22 | 0.05 | 631.58 | 0.35 |
7 | 0.44 | 157.89 | 0.69 | 23 | 0.22 | 157.89 | 0.35 |
8 | 0.33 | 315.79 | 1.04 | 24 | 0.16 | 315.79 | 0.52 |
9 | 0.33 | 631.58 | 2.08 | 25 | 0.16 | 631.58 | 1.04 |
10 | 0.44 | 473.68 | 2.08 | 26 | 0.22 | 473.68 | 1.04 |
11 | 0.11 | 315.79 | 0.35 | 27 | 0.05 | 315.79 | 0.17 |
12 | 0.22 | 157.89 | 0.35 | 28 | 0.11 | 157.89 | 0.17 |
13 | 0.44 | 315.79 | 1.39 | 29 | 0.22 | 315.79 | 0.69 |
14 | 0.33 | 157.89 | 0.52 | 30 | 0.16 | 157.89 | 0.26 |
15 | 0.22 | 631.58 | 1.39 | 31 | 0.11 | 631.58 | 0.69 |
16 | 0.11 | 473.68 | 0.52 | 32 | 0.05 | 473.68 | 0.26 |
Curing Ages | Fitting Formula | R2 | α | β (×10−2) |
---|---|---|---|---|
3 d | σfiber = σno-fiber (1 + 0.2072 × λ) + 0.3097 | 0.5304 | 0.2072 | 0.3097 |
7 d | σfiber = σno-fiber (1 + 0.0408 × λ) + 0.1316 | 0.9016 | 0.0408 | 0.1316 |
28 d | σfiber = σno-fiber (1 + 0.0725 × λ) + 0.2849 | 0.8497 | 0.0725 | 0.2849 |
Mixture | Cement Content (wt.%) | Fiber Content (vol.%) | Materials Cost ($/m3) | |
---|---|---|---|---|
No-Fiber | Fiber | |||
T1 | 13 | 0.05 | 7.85 | 8.35 |
T2 | 13 | 0.11 | 7.93 | 8.93 |
T3 | 13 | 0.16 | 8.06 | 9.57 |
T4 | 13 | 0.22 | 8.15 | 10.15 |
T5 | 10 | 0.11 | 6.41 | 7.41 |
T6 | 10 | 0.05 | 6.49 | 6.99 |
T7 | 10 | 0.22 | 6.57 | 8.57 |
T8 | 10 | 0.16 | 6.65 | 8.15 |
T9 | 8 | 0.16 | 5.43 | 6.93 |
T10 | 8 | 0.22 | 5.51 | 7.51 |
T11 | 8 | 0.05 | 5.53 | 6.03 |
T12 | 8 | 0.11 | 5.61 | 6.62 |
T13 | 7 | 0.22 | 4.74 | 6.74 |
T14 | 7 | 0.16 | 4.76 | 6.26 |
T15 | 7 | 0.11 | 4.78 | 5.79 |
T16 | 7 | 0.05 | 4.87 | 5.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Shi, X.; Zhang, S.; Chen, H.; Zhou, J.; Yu, Z.; Huang, P. Fiber-Reinforced Cemented Paste Backfill: The Effect of Fiber on Strength Properties and Estimation of Strength Using Nonlinear Models. Materials 2020, 13, 718. https://doi.org/10.3390/ma13030718
Chen X, Shi X, Zhang S, Chen H, Zhou J, Yu Z, Huang P. Fiber-Reinforced Cemented Paste Backfill: The Effect of Fiber on Strength Properties and Estimation of Strength Using Nonlinear Models. Materials. 2020; 13(3):718. https://doi.org/10.3390/ma13030718
Chicago/Turabian StyleChen, Xin, Xiuzhi Shi, Shu Zhang, Hui Chen, Jian Zhou, Zhi Yu, and Peisheng Huang. 2020. "Fiber-Reinforced Cemented Paste Backfill: The Effect of Fiber on Strength Properties and Estimation of Strength Using Nonlinear Models" Materials 13, no. 3: 718. https://doi.org/10.3390/ma13030718
APA StyleChen, X., Shi, X., Zhang, S., Chen, H., Zhou, J., Yu, Z., & Huang, P. (2020). Fiber-Reinforced Cemented Paste Backfill: The Effect of Fiber on Strength Properties and Estimation of Strength Using Nonlinear Models. Materials, 13(3), 718. https://doi.org/10.3390/ma13030718