Heat Treatment and Formation of Magnetocaloric 1:13 Phase in LaFe11.4Si1.2Co0.4 Processed by Laser Beam Melting
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Metallographic Characterization by Microprobing
3.1.1. Conventional Heat Treatment (in TGA Device)
3.1.2. Induction Technology
3.2. Magnetocaloric Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kitanovski, A.; Tušek, J.; Tomc, U.; Plaznik, U.; Ozbolt, M.; Poredoš, A. A Magnetocaloric Energy Conversion. From Theory to Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Liu, J.P.; Fullerton, E.; Gutfleisch, O.; Sellmyer, D.J. Nanoscale Magnetic Materials and Applications; Springer: Boston, MA, USA, 2009. [Google Scholar]
- Liu, J. Optimizing and fabricating magnetocaloric materials. Chin. Phys. B 2014, 23, 47503. [Google Scholar] [CrossRef]
- Fujita, A.; Fujieda, S.; Hasegawa, Y.; Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides. Phys. Rev. B 2003, 67, 10. [Google Scholar] [CrossRef] [Green Version]
- Krautz, M.; Skokov, K.; Gottschall, T.; Teixeira, C.S.; Waske, A.; Liu, J.; Schultz, L.; Gutfleisch, O. Systematic investigation of Mn substituted La(Fe,Si)13 alloys and their hydrides for room-temperature magnetocaloric application. J. Alloy. Compd. 2014, 598, 27–32. [Google Scholar] [CrossRef]
- Liu, J.; Krautz, M.; Skokov, K.; Woodcock, T.G.; Gutfleisch, O. Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La–Fe–Si alloys. Acta Mater. 2011, 59, 602–611. [Google Scholar] [CrossRef]
- Katter, M.; Zellmann, V.; Reppel, G.W.; Uestuener, K. Magnetocaloric Properties of LaFeCoSi{13} Bulk Material Prepared by Powder Metallurgy. IEEE Trans. Magn. 2008, 44, 3044–3047. [Google Scholar] [CrossRef]
- Rosendahl Hansen, B.; Theil Kuhn, L.; Bahl, C.; Lundberg, M.; Ancona-Torres, C.; Katter, M. Properties of magnetocaloric La(Fe,Co,Si)13 produced by powder metallurgy. J. Magn. Magn. Mater. 2010, 322, 3447–3454. [Google Scholar] [CrossRef]
- Liu, J.; Moore, J.D.; Skokov, K.P.; Krautz, M.; Löwe, K.; Barcza, A.; Katter, M.; Gutfleisch, O. Exploring La(Fe,Si)13-based magnetic refrigerants towards application. Scr. Mater. 2012, 67, 584–589. [Google Scholar] [CrossRef]
- Waske, A.; Gruner, M.E.; Gottschall, T.; Gutfleisch, O. Magnetocaloric materials for refrigeration near room temperature. Mrs Bull. 2018, 43, 269–273. [Google Scholar] [CrossRef]
- Lyubina, J.; Schäfer, R.; Martin, N.; Schultz, L.; Gutfleisch, O. Novel Design of La(Fe,Si)13 Alloys Towards High Magnetic Refrigeration Performance. Adv. Mater. 2010, 33, 3735–3739. [Google Scholar] [CrossRef]
- Mayer, C.; Dubrez, A.; Pierronnet, M.; Vikner, P. Towards the large scale production of (La 1-z Ce z )(Fe 1-x-y Mn y Si x ) 13 H n products for room temperature refrigeration. Phys. Status Solidi 2014, 11, 1059–1063. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Niu, E.; Hu, F.; Sun, J.; Shen, B. Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)13-based magnetic refrigeration materials. Appl. Phys. Lett. 2014, 104, 062407. [Google Scholar] [CrossRef]
- Skokov, K.P.; Karpenkov, D.Y.; Kuz’min, M.D.; Radulov, I.A.; Gottschall, T.; Kaeswurm, B.; Fries, M.; Gutfleisch, O. Heat exchangers made of polymer-bonded La(Fe,Si)13. Journal of Applied Physics 2014, 115, 17A941. [Google Scholar] [CrossRef]
- Wieland, S.; Petzoldt, F. Powder-extrusion and sintering of magnetocaloric LaCe(FeMnSi) 13 alloy. J. Alloy. Compd. 2017, 719, 182–188. [Google Scholar] [CrossRef]
- Zhang, B.; Fenineche, N.-E.; Zhu, L.; Liao, H.; Coddet, C. Studies of magnetic properties of permalloy (Fe–30%Ni) prepared by SLM technology. J. Magn. Magn. Mater. 2012, 324, 495. [Google Scholar] [CrossRef]
- Geng, J.; Nlebedim, I.C.; Besser, M.F.; Simsek, E.; Ott, R.T. Bulk Combinatorial Synthesis and High Throughput Characterization for Rapid Assessment of Magnetic Materials: Application of Laser Engineered Net Shaping (LENS™). JOM 2016, 68, 1972–1977. [Google Scholar] [CrossRef]
- Mikler, C.V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R.V.; Banerjee, R. Laser Additive Manufacturing of Magnetic Materials. JOM 2017, 69, 532–543. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.D.; Klemm, D.; Lindackers, D.; Grasemann, S.; Träger, R.; Eckert, J.; Löber, L.; Scudino, S.; Katter, M.; Barcza, A.; et al. Selective laser melting of La(Fe,Co,Si)13 geometries for magnetic refrigeration. J. Appl. Phys. 2013, 114, 43907. [Google Scholar] [CrossRef]
- Mostaghimi, F.; Fischer-Bühner, J.; Heemann, L.; Hofmann, P.; Von Hehl, A.; Uhlenwinkel, V. Anti-satellite System For The Improvement Of Powder Quality In Additive Manufacturing Using A FeMnAlSi Alloy. In Proceedings of the European PMPM2018 conference, Ljubljana, Slovenia, 28 November–1 December 2018. [Google Scholar]
- Wieland, S.; Kagathara, J.; Gärtner, E.; Uhlenwinkel, V.; Steinbacher, M. Powder, process parameters and heat treatment conditions for Laser Beam Melting of LaFeSi-based alloys. In Proceedings of the 8th International Conference on Magnetic Refrigeration at Room Temperature Thermag VIII, Darmstadt, Germany, 16–20 September 2018. [Google Scholar]
- Xiang, C.; Chen, Y.; Tang, Y.; Zeng, G.; Luo, H.; Tan, F. The influence of different cooling processes on phase, microstructure and magnetocaloric properties of LaFeSi compounds. In Proceedings of the 5th International Conference on Magnetic Refrigeration at Room Temperature, Thermag V, Grenoble, France, 17–20 September 2012. [Google Scholar]
- Gębara, P.; Pawlik, P. Broadening of temperature working range in magnetocaloric La(Fe,Co,Si) 13 - based multicomposite. J. Magn. Magn. Mater. 2017, 442, 145–151. [Google Scholar] [CrossRef]
- Lyubina, J.; Gutfleisch, O.; Kuz’min, M.D.; Richter, M. La(Fe,Si)13-based magnetic refrigerants obtained by novel processing routes. J. Magn. Magn. Mater. 2008, 320, 2252–2258. [Google Scholar] [CrossRef]
- Fu, S.; Long, Y.; Hu, J.; Sun, Y. Influence of the oxidation on microstructure and magnetocaloric effect of LaFe11.5Si1.5C0.2 compounds. Mater. Lett. 2013, 112, 149–152. [Google Scholar] [CrossRef]
Chemical Composition | |||||
---|---|---|---|---|---|
La (wt. %) | Fe (wt. %) | Si (wt. %) | Co (wt. %) | O (wt. %) | |
Stoichiometric | 16.7 | 76.4 | 4.1 | 2.8 | - |
LBM sample | 17.5 | 75 | 4.1 | 2.9 | 0.5 |
1373 K | ||||
---|---|---|---|---|
30 min | 60 min | 120 min | 240 min | |
α-Fe [wt. %] | 32 | 25 | 30 | 28 |
1373 K | |||
---|---|---|---|
15 min | 30 min | 45 min | |
α-Fe [ wt. %] | 17 | 28 | 30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kagathara, J.; Wieland, S.; Gärtner, E.; Uhlenwinkel, V.; Steinbacher, M. Heat Treatment and Formation of Magnetocaloric 1:13 Phase in LaFe11.4Si1.2Co0.4 Processed by Laser Beam Melting. Materials 2020, 13, 773. https://doi.org/10.3390/ma13030773
Kagathara J, Wieland S, Gärtner E, Uhlenwinkel V, Steinbacher M. Heat Treatment and Formation of Magnetocaloric 1:13 Phase in LaFe11.4Si1.2Co0.4 Processed by Laser Beam Melting. Materials. 2020; 13(3):773. https://doi.org/10.3390/ma13030773
Chicago/Turabian StyleKagathara, Jwalant, Sandra Wieland, Eric Gärtner, Volker Uhlenwinkel, and Matthias Steinbacher. 2020. "Heat Treatment and Formation of Magnetocaloric 1:13 Phase in LaFe11.4Si1.2Co0.4 Processed by Laser Beam Melting" Materials 13, no. 3: 773. https://doi.org/10.3390/ma13030773
APA StyleKagathara, J., Wieland, S., Gärtner, E., Uhlenwinkel, V., & Steinbacher, M. (2020). Heat Treatment and Formation of Magnetocaloric 1:13 Phase in LaFe11.4Si1.2Co0.4 Processed by Laser Beam Melting. Materials, 13(3), 773. https://doi.org/10.3390/ma13030773