MgO-Lignin Dual Phase Filler as an Effective Modifier of Polyethylene Film Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MgO-Lignin Hybrid Systems
2.3. Physicochemical and Dispersive-Microstructural Characteristics of Hybrid Systems
2.4. Preparation of Polyethylene/PE-g-MAH/MgO-Lignin Hybrid Composites
2.5. Welding Conditions of Polyethylene/Hybrid Composites
3. Results and Discussion
3.1. Dispersive-Morphological and Physicochemical Properties of MgO-Lignin Hybrid Materials
3.2. Technological Properties of Welded Polyethylene/Hybrid Composites
3.2.1. Weldability of Polyethylene/Hybrid Composites
3.2.2. Seal Force Measurement of Polyethylene/Hybrid Composites
3.2.3. Shear Test of Welded Joint of Polyethylene/Hybrid Composites
3.2.4. Tear Test of Welded Films of Polyethylene/Hybrid Composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peng, Y.; Liu, R.; Cao, J. Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering. Appl. Surf. Sci. 2015, 332, 253–259. [Google Scholar] [CrossRef]
- Norgren, M.; Edlund, H. Lignin: Recent advances and emerging applications. Curr. Opin. Colloid Interface Sci. 2014, 19, 409–416. [Google Scholar] [CrossRef]
- Canetti, M.; Bertini, F. Supermolecular structure and thermal properties of poly (ethylene terephthalate)/lignin composites. Compos. Sci. Technol. 2007, 67, 3151–3157. [Google Scholar] [CrossRef]
- Liu, R.; Peng, Y.; Cao, J.; Chen, Y. Comparison on properties of lignocelulosic flour/polymer composites by using wood, cellulose, and lignin as a fillers. Compos. Sci. Technol. 2014, 103, 1–7. [Google Scholar] [CrossRef]
- Fernandes, E.M.; Aroso, I.; Mano, J.F.; Covas, J.A.; Reis, R.L. Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Compos. Part B Eng. 2014, 67, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Ghozali, M.; Triwulandri, E.; Haryono, A.; Yuanita, E. Effect of lignin on morphology, biodegradability, mechanical and thermal properties of low linear density polyethylene/lignin biocomposites. In Proceedings of the Innovation in Polymer Science and Technology, Medan, Indonesia, 7–10 November 2016; IOP Publishing Ltd.: Bristol, UK; p. 223. [Google Scholar]
- Hilburg, S.L.; Elder, A.N.; Chung, H. A universal rout towards thermoplastic lignin composites with improved mechanical properties. Polymer 2014, 55, 995–1003. [Google Scholar] [CrossRef]
- Feldman, D.; Banu, D.; Lacasse, M.; Wang, J.; Luchian, C. Lignin and its polyblends. J. Macromol. Sci. Part A Pure Appl. Chem. 1995, 93, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Bula, K.; Klapiszewski, Ł.; Jesionowski, T. A novel functional silica/lignin hybrid material as a potential bio-based polypropylene filler. Polym. Compos. 2016, 36, 913–922. [Google Scholar] [CrossRef]
- Bozsódi, B.; Romhányi, V.; Pataki, P.; Kun, D.; Renner, K.; Pukánszky, B. Modification of interactions in polypropylene/lignosulfonate blends. Mater. Des. 2016, 103, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Alexy, P.; Kosikova, B.; Crkonova, G.; Gregorova, A.; Martis, P. Modification of lignin–polyethylene blends with high lignin content using ethylene–vinylacetate co-polymer as modifier. J. Appl. Polym. Sci. 2004, 94, 1855–1860. [Google Scholar] [CrossRef]
- Diop, A.; Mijiyawa, F.; Koffi, D.; Kokta, B.V.; Montplaisir, D. Study of lignin dispersion in low-density polyethylene. J. Thermoplast. Compos. Mater. 2015, 28, 1662–1674. [Google Scholar] [CrossRef]
- Kun, D.; Pukanszky, B. Polymer/lignin blends: Interactions, properties, applications. Eur. Polym. J. 2017, 93, 618–641. [Google Scholar] [CrossRef] [Green Version]
- Sailaja, R.R.N.; Deepthi, M.V. Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater. Des. 2010, 31, 4369–4379. [Google Scholar] [CrossRef]
- Imre, B.; Pukánszky, B. Compatibilization in bio-based and biodegradable polymer blends. Eur. Polym. J. 2013, 49, 1215–1233. [Google Scholar] [CrossRef] [Green Version]
- Klapiszewski, Ł.; Bula, K.; Dobrowolska, A.; Czaczyk, K.; Jesionowski, T. A high-density polyethylene container based on ZnO/lignin dual fillers with potential antimicrobial activity. Polym. Test. 2019, 73, 51–59. [Google Scholar] [CrossRef]
- Bula, K.; Klapiszewski, Ł.; Jesionowski, T. Effect of processing conditions and functional silica/lignin content on the properties of bio-based composite thin sheet films. Polym. Test. 2019, 77, 105911. [Google Scholar] [CrossRef]
- Gregorova, A.; Kosikova, B.; Stasko, A.J. Radical scavenging capacity of lignin and its effect on processing stabilization of virgin and recycled polypropylene. Appl. Polym. Sci. 2007, 106, 1626–1631. [Google Scholar] [CrossRef]
- Pospisil, J.; Horak, Z.; Pilar, J.; Billingham, N.C.; Zweifel, H.; Nespurek, S. Influence of testing conditions on the performance and durability of polymer stabilisers in thermal oxidation. Polym. Degrad. Stab. 2003, 82, 145–162. [Google Scholar] [CrossRef]
- Pucciariello, R.; Villani, V.; Bonini, C.; D’Auria, M.; Vetere, T. Physical properties of straw lignin-based polymer blends. Polymer 2004, 45, 4159–4169. [Google Scholar] [CrossRef]
- Levon, K.; Huhtala, J.; Maim, B.; Lindberg, J.J. Improvement of the thermal stabilization of polyethylene with lignosulphonate. Polymer 1987, 28, 745–750. [Google Scholar] [CrossRef]
- Domenek, S.; Louaifi, A.; Guinault, A.; Baumberger, S. Potential of lignins as antioxidant additive in active biodegradable packaging materials. J. Polym. Environ. 2013, 21, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Fortunati, E.; Dominici, F.; Giovanale, G.; Mazzaglia, A.; Balestra, G.M.; Kenny, J.M.; Puglia, D. Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int. J. Biol. Macromol. 2016, 89, 360–368. [Google Scholar] [CrossRef]
- Shankar, S.; Reddy, J.P.; Rhim, J.W. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. Int. J. Biol. Macromol. 2015, 81, 267–273. [Google Scholar] [CrossRef]
- Cazacu, G.; Pascu, M.C.; Profire, L.; Kowarski, A.I.; Mihaes, M.; Vasile, C. Lignin role in a complex polyolefin blend. Ind. Crops Prod. 2004, 20, 261–273. [Google Scholar] [CrossRef]
- Stewart, D. Lignin as a base material for materials applications: Chemistry, application and economics. Ind. Crops Prod. 2008, 27, 202–207. [Google Scholar] [CrossRef]
- Grząbka-Zasadzińska, A.; Klapiszewski, Ł.; Borysiak, S.; Jesionowski, T. Thermal and mechanical properties of silica–lignin/polylactide composites subjected to biodegradation. Materials 2018, 11, 2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klapiszewski, Ł.; Grząbka-Zasadzińska, A.; Borysiak, S.; Jesionowski, T. Preparation and characterization of polypropylene composites reinforced by functional ZnO/lignin hybrid materials. Polym. Test. 2019, 79, 106058. [Google Scholar] [CrossRef]
- Klapiszewski, Ł.; Nowacka, M.; Milczarek, G.; Jesionowski, T. Physicochemical and electrokinetic properties of silica/lignin biocomposites. Carbohydr. Polym. 2013, 94, 345–355. [Google Scholar] [CrossRef]
- Klapiszewski, Ł.; Jamrozik, A.; Strzemiecka, B.; Koltsov, I.; Borek, B.; Matykiewicz, D.; Voelkel, A.; Jesionowski, T. Characteristics of multifunctional, eco-friendly lignin-Al2O3 hybrid fillers and their influence on the properties of composites for the abrasive tools. Molecules 2017, 22, 1920. [Google Scholar] [CrossRef] [Green Version]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Liu, Q.; Wang, S.; Zheng, Y.; Luo, Z.; Cen, K. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J. Anal. Appl. Pyrolysis 2008, 82, 170–177. [Google Scholar] [CrossRef]
Film Composition | Composition | |||
---|---|---|---|---|
Polymer Content (%) of Weight | Filler Content (%) of Weight | PE-g-MAH (%) of Weight | Chill Roll Speed (m/min) | |
LDPE | 100 | – | – | 2.0 |
LDPE/MgO | 93 | 5.0 | 2.0 | 2.0 |
LDPE/MgO-L (5:1 w/w) | ||||
LDPE/MgO-L (1:1 w/w) | ||||
LDPE/MgO-L (1:5 w/w) | ||||
LDPE/Lignin |
Sample Name | Particle Diameter from Mastersizer 2000 (μm) | |||
---|---|---|---|---|
d(0.1) 1 | d(0.5) 2 | d(0.9) 3 | D[4.3] 4 | |
MgO | 0.6 | 1.2 | 2.2 | 1.5 |
Lignin | 2.0 | 5.1 | 8.3 | 6.4 |
MgO-L (1:5 w/w) | 1.5 | 4.0 | 4.6 | 4.2 |
MgO-L (1:1 w/w) | 1.4 | 3.1 | 4.3 | 3.3 |
MgO-L (5:1 w/w) | 1.3 | 2.8 | 4.2 | 2.9 |
Film Composition | Mean Film Thickness (mm) | Adjusted Heating Time during Welding (s) |
---|---|---|
LDPE | 0.140 | 2.0 |
LDPE/MgO | 0.107 | 3.0 |
LDPE/MgO-L (5:1 w/w) | 0.133 | 2.5 |
LDPE/MgO-L (1:1 w/w) | 0.129 | 2.0 |
LDPE/MgO-L (1:5 w/w) | 0.227 | 2.0 |
LDPE/Lignin | 0.199 | 2.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bula, K.; Kubicki, G.; Jesionowski, T.; Klapiszewski, Ł. MgO-Lignin Dual Phase Filler as an Effective Modifier of Polyethylene Film Properties. Materials 2020, 13, 809. https://doi.org/10.3390/ma13030809
Bula K, Kubicki G, Jesionowski T, Klapiszewski Ł. MgO-Lignin Dual Phase Filler as an Effective Modifier of Polyethylene Film Properties. Materials. 2020; 13(3):809. https://doi.org/10.3390/ma13030809
Chicago/Turabian StyleBula, Karol, Grzegorz Kubicki, Teofil Jesionowski, and Łukasz Klapiszewski. 2020. "MgO-Lignin Dual Phase Filler as an Effective Modifier of Polyethylene Film Properties" Materials 13, no. 3: 809. https://doi.org/10.3390/ma13030809
APA StyleBula, K., Kubicki, G., Jesionowski, T., & Klapiszewski, Ł. (2020). MgO-Lignin Dual Phase Filler as an Effective Modifier of Polyethylene Film Properties. Materials, 13(3), 809. https://doi.org/10.3390/ma13030809