Waste-to-Carbon: Is the Torrefied Sewage Sludge with High Ash Content a Better Fuel or Fertilizer?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sewage Sludge Characterization
2.2. Experimental Design
2.3. Analyses of the Biochar Properties
- Moisture content using the KBC65W (WAMED, Warsaw, Poland) laboratory dryer with Radwag PS 3500.R2 (Radwag, Radom, Poland) analytical balance following the PN-EN 14346:2011 standard [51],
- Losses on ignition (LOI) by means of model 8.1/1100, SNOL, Utena, Lithuania muffle furnace with Radwag PS 3500.R2 analytical balance following the PN-EN 15169:2011 standard [52],
- Ash content using the SNOL 8.1/1100 muffle furnace with Radwag PS 3500.R2 analytical balance following the PN-G-04516:1998 standard [53],
- Elementary C, H, N, and O composition using Perkin Elmer 2400 Series CHNS/O (Waltham, MA, USA) with Radwag, MYA 2.4 Y analyzer following PN-EN ISO 16948:2015-07 [54]
- HHV and LHV using the IKA C2000 Basic calorimeter (IKA® Poland Sp. z o.o., Warsaw, Poland) following the PN-G-04513:1981 standard [55],
- Mg, Ca, K, Na total content in solid samples were analyzed with atomic absorption spectroscopy (AAS) after dry mineralization using Varian Spektra AA 240 FS following PN-EN 14082: 2004 standard [56] (Agilent Technologies, Santa Clara, CA, USA). Dry mineralization was carried out with the procedure described below. The homogeneous sample (10 g) was incinerated on the heating plate; then the samples were mineralized in a muffle furnace for 8 h, the ash was burned for 2 h after dissolving in 2 cm3 HNO3. The mineralization was transferred quantitatively into 10 cm3 vessels using 2M HNO3.
2.4. Data Analysis
3. Results
3.1. The Influence of Torrefaction Temperature and Residence Time on Fuel Properties of Biochars
3.2. The Influence of Torrefaction Temperature and Residence Time on Fertilizer Properties of Biochars
4. Discussion
4.1. Proximate Analysis
4.2. Fuel Properties
4.3. Fertilizer Properties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Mass Yield, % | ||||||
---|---|---|---|---|---|---|
Model | Mass Yield, % = (1.44809) + (7.03892 × 10-6)·T2 + (−0.00364092)·T + (0.000414299)·t2+ (−0.0460416)·t + (0.000374584)·T·t + (−8.04432 × 10-7)·T2·t + (−3.39151 × 10−6)·T·t2 + (7.27706 × 10−9)·T2·t2 R2 = 0.98 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 1.448091 | 0.285892 | 0.00 | 0.00 | 0.879256 | 2.016927 |
a2 | 0.000007 | 0.000000 | 0.00 | 0.00 | 0.000007 | 0.000007 |
a3 | −0.003641 | 0.002318 | 0.00 | 0.00 | −0.008253 | 0.000971 |
a4 | 0.000414 | 0.000201 | 0.00 | 0.00 | 0.000015 | 0.000814 |
a5 | −0.046042 | 0.016232 | 0.00 | 0.00 | −0.078339 | −0.013745 |
a6 | 0.000375 | 0.000132 | 0.00 | 0.00 | 0.000113 | 0.000636 |
a7 | −0.000001 | 0.000000 | 0.00 | 0.00 | −0.000001 | −0.000001 |
a8 | −0.000003 | 0.000000 | 0.00 | 0.00 | −0.000003 | −0.000003 |
a9 | 0.000000 | 0.000000 | 0.00 | 0.00 | 0.000000 | 0.000000 |
dry mass, % | ||||||
---|---|---|---|---|---|---|
Model | d.m., % = (223.1) + (0.002)·T2 + (−1.053)·T + (0.083)·t2 + (−7.035)·t + (0.0583)·T·t + (−0.0001)·T2· t + (−0.0007)·T·t2 + (1.393 × 10−6)·T2·t2 R2 = 0.26 | |||||
Function Parameters | value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 223.1321 | 39.68104 | 0.00 | 0.00 | 144.1793 | 302.0849 |
a2 | 0.0022 | 0.00064 | 0.00 | 0.00 | 0.0009 | 0.0034 |
a3 | −1.0528 | 0.32172 | 0.00 | 0.00 | −1.6929 | −0.4127 |
a4 | 0.0828 | 0.02787 | 0.00 | 0.00 | 0.0273 | 0.1382 |
a5 | −7.0352 | 2.25299 | 0.00 | 0.00 | −11.5179 | −2.5524 |
a6 | 0.0583 | 0.01827 | 0.00 | 0.00 | 0.0219 | 0.0946 |
a7 | −0.0001 | 0.00004 | 0.00 | 0.00 | −0.0002 | −0.0000 |
a8 | −0.0007 | 0.00023 | 0.00 | 0.00 | −0.0011 | −0.0002 |
a9 | 0.0000 | 0.00000 | 0.00 | 0.00 | 0.0000 | 0.0000 |
Loss on Ignition, % d.m. | ||||||
---|---|---|---|---|---|---|
Model | LOI, % = (−43.517) + (−0.0012353)·T2 + (0.702014)·t + (−0.0291921)·T2 + (3.83877)·T + (−0.0285369)·t·T + (4.89634 × 10−5)·t2·T + (0.000221984)·T·t2 + (−3.90553 × 10−7)·T2·t2 R2 = 0.72 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | −43.5170 | 58.73534 | 0.00 | 0.00 | −160.382 | 73.34794 |
a2 | −0.0012 | 0.00095 | 0.00 | 0.00 | −0.003 | 0.00066 |
a3 | 0.7020 | 0.47621 | 0.00 | 0.00 | −0.245 | 1.64952 |
a4 | −0.0292 | 0.04126 | 0.00 | 0.00 | −0.111 | 0.05290 |
a5 | 3.8388 | 3.33485 | 0.00 | 0.00 | −2.797 | 10.47407 |
a6 | −0.0285 | 0.02704 | 0.00 | 0.00 | −0.082 | 0.02526 |
a7 | 0.0000 | 0.00005 | 0.00 | 0.00 | −0.000 | 0.00016 |
a8 | 0.0002 | 0.00033 | 0.00 | 0.00 | −0.000 | 0.00089 |
a9 | −0.0000 | 0.00000 | 0.00 | 0.00 | −0.000 | −0.00000 |
Ash Content, % d.m. | ||||||
---|---|---|---|---|---|---|
Model | ash, % = (14.0912) + (−0.000486683)·T2 + (0.256399)·t + (−0.00923204)·t2 + (1.13906)·t + (−0.00882318)·T·t + (1.67301 × 10−5)·T2·t + (4.9036 × 10−5)·t·T2 + (−3.61091 × 10−8)·t2·T2 R2 = 0.88 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 14.09118 | 43.69689 | 0.00 | 0.00 | −72.8519 | 101.0343 |
a2 | −0.00049 | 0.00071 | 0.00 | 0.00 | −0.0019 | 0.0009 |
a3 | 0.25640 | 0.35428 | 0.00 | 0.00 | −0.4485 | 0.9613 |
a4 | −0.00923 | 0.03069 | 0.00 | 0.00 | −0.0703 | 0.0518 |
a5 | 1.13906 | 2.48099 | 0.00 | 0.00 | −3.7973 | 6.0755 |
a6 | −0.00882 | 0.02012 | 0.00 | 0.00 | −0.0488 | 0.0312 |
a7 | 0.00002 | 0.00004 | 0.00 | 0.00 | −0.0001 | 0.0001 |
a8 | 0.00005 | 0.00025 | 0.00 | 0.00 | −0.0004 | 0.0005 |
a9 | −0.00000 | 0.00000 | 0.00 | 0.00 | −0.0000 | −0.0000 |
HHV, MJ·kg−1 | ||||||
---|---|---|---|---|---|---|
Model | HHV, MJ·kg−1 = (56.7993) + (0.000704123)·T2 + (−0.35836)·T + (0.0154298)·t2 + (−1.93107)·t + (0.0147992)·T·t + (−2.75086 × 10−5)·T2·t + (−0.000109331)·T·t2 + (1.82382 × 10−7)·T2·t2 R2 = 0.63 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 56.79931 | 14.38158 | 0.00 | 0.00 | 28.18447 | 85.41415 |
a2 | 0.00070 | 0.00023 | 0.00 | 0.00 | 0.00024 | 0.00117 |
a3 | −0.35836 | 0.11660 | 0.00 | 0.00 | −0.59036 | −0.12636 |
a4 | 0.01543 | 0.01010 | 0.00 | 0.00 | −0.00467 | 0.03553 |
a5 | −1.93107 | 0.81655 | 0.00 | 0.00 | −3.55574 | −0.30640 |
a6 | 0.01480 | 0.00662 | 0.00 | 0.00 | 0.00163 | 0.02797 |
a7 | −0.00003 | 0.00001 | 0.00 | 0.00 | −0.00005 | −0.00000 |
a8 | −0.00011 | 0.00008 | 0.00 | 0.00 | −0.00027 | 0.00005 |
a9 | 0.00000 | 0.00000 | 0.00 | 0.00 | 0.00000 | 0.00000 |
C, % d.m. | ||||||
---|---|---|---|---|---|---|
Model | C, % = (−6.51131) + (−0.000660336)·T2 + (0.304374)·T + (−0.0668472)·t2 + (4.04284)·t + (−0.0353957)·T·t + (7.50162 × 10−5)·T2·t + (0.000579037)·T·t2 + (−1.21488 × 10−6)·T2·t2 R2 = 0.49 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | −6.51131 | 30.69734 | 0.00 | 0.00 | −67.5894 | 54.56676 |
a2 | −0.00066 | 0.00050 | 0.00 | 0.00 | −0.0016 | 0.00033 |
a3 | 0.30437 | 0.24889 | 0.00 | 0.00 | −0.1908 | 0.79958 |
a4 | −0.06685 | 0.02156 | 0.00 | 0.00 | −0.1098 | −0.02394 |
a5 | 4.04284 | 1.74291 | 0.00 | 0.00 | 0.5750 | 7.51068 |
a6 | −0.03540 | 0.01413 | 0.00 | 0.00 | −0.0635 | −0.00728 |
a7 | 0.00008 | 0.00003 | 0.00 | 0.00 | 0.0000 | 0.00013 |
a8 | 0.00058 | 0.00017 | 0.00 | 0.00 | 0.0002 | 0.00093 |
a9 | −0.00000 | 0.00000 | 0.00 | 0.00 | −0.0000 | −0.00000 |
H, % d.m. | ||||||
---|---|---|---|---|---|---|
Model | H, % = (11.1242) + (8.72369 × 10−5)·T2 + (−0.0504356)·T + (0.00103414)·t2 + (−0.162667)·t + (0.00102235)·T·t + (−1.89313 ×·10−6)·T2·t + (−4.26597 × 10−6)·T·t2 + (4.46763 × 10−9)·T2·t2 R2 = 0.79 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 11.12415 | 7.851332 | 0.00 | 0.00 | −4.49753 | 26.74584 |
a2 | 0.00009 | 0.000127 | 0.00 | 0.00 | −0.00017 | 0.00034 |
a3 | −0.05044 | 0.063657 | 0.00 | 0.00 | −0.17709 | 0.07622 |
a4 | 0.00103 | 0.005515 | 0.00 | 0.00 | −0.00994 | 0.01201 |
a5 | −0.16267 | 0.445779 | 0.00 | 0.00 | −1.04963 | 0.72429 |
a6 | 0.00102 | 0.003614 | 0.00 | 0.00 | −0.00617 | 0.00821 |
a7 | −0.00000 | 0.000000 | 0.00 | 0.00 | −0.00000 | −0.00000 |
a8 | −0.00000 | 0.000045 | 0.00 | 0.00 | −0.00009 | 0.00008 |
a9 | 0.00000 | 0.000000 | 0.00 | 0.00 | 0.00000 | 0.00000 |
O, % d.m. | ||||||
---|---|---|---|---|---|---|
Model | O, % = (94.3211) + (0.00132001)·T2 + (−0.646472)·T + (0.110223)·t2 + (−7.32599)·t + (0.0612511)·T·t + (−0.000125945)·T2·t + (−0.000907679)·T·t2 + (1.82155 × 10−6)·T2·t2 R2 = 0.83 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 1051.470 | 55631.35 | 0.02 | 0.99 | −113095 | 115197.6 |
a2 | 0.248 | 0.90 | 0.27 | 0.79 | −2 | 2.1 |
a3 | −47.137 | 450.67 | −0.105 | 0.92 | −972 | 877.6 |
a4 | 5.535 | 38.52 | 0.14 | 0.88 | −74 | 84.6 |
a5 | −538.670 | 3116.91 | −0.17 | 0.86 | −6934 | 5856.7 |
a6 | 10.229 | 25.24 | 0.40 | 0.69 | −42 | 62.0 |
a7 | −0.031 | 0.05 | −0.61 | 0.54 | −0 | 0.1 |
a8 | −0.122 | 0.31 | −0.39 | 0.70 | −1 | 0.5 |
a9 | 0.000 | 0.00 | 0.61 | 0.5 | −0 | 0.0 |
HHV (daf), MJ·kg−1 | ||||||
---|---|---|---|---|---|---|
Model | HHV (daf), MJ·kg−1 = (64.4828) + (0.000608875)·T2 + (−0.319667)·T + (0.00555782)·t2 + (−1.47697)·t + (0.0100922)·T·t + (−1.58506 × 10−5)·T2·t + (−2.18888 × 10−5)·T·t2 + (−5.1846 × 10−9)·T2·t2 R2 = 0.71 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 64.48283 | 32.93082 | 0.00 | 0.00 | −1.03918 | 130.0048 |
a2 | 0.00061 | 0.00053 | 0.00 | 0.00 | −0.00045 | 0.0017 |
a3 | −0.31967 | 0.26700 | 0.00 | 0.00 | −0.85090 | 0.2116 |
a4 | 0.00556 | 0.02313 | 0.00 | 0.00 | −0.04047 | 0.0516 |
a5 | −1.47697 | 1.86972 | 0.00 | 0.00 | −5.19713 | 2.2432 |
a6 | 0.01009 | 0.01516 | 0.00 | 0.00 | −0.02007 | 0.0403 |
a7 | −0.00002 | 0.00003 | 0.00 | 0.00 | −0.00008 | 0.0000 |
a8 | −0.00002 | 0.00019 | 0.00 | 0.00 | −0.00040 | 0.0004 |
a9 | −0.00000 | 0.00000 | 0.00 | 0.00 | −0.00000 | −0.0000 |
LHV, MJ·kg−1 | ||||||
---|---|---|---|---|---|---|
Model | LHV, MJ·kg−1 = (57.3765) + (0.000737877)·T2 + (−0.373049)·T + (0.0172241)·t2 + (−2.06729)·t + (0.015999)·T·t + (−2.99897 × 10−5)·T2·t + (−0.000125133)·T·t2 + (2.15415 × 10−7)·T2·t2 R2 = 0.61 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 57.37645 | 14.96197 | 0.00 | 0.00 | 27.60682 | 87.14608 |
a2 | 0.00074 | 0.00024 | 0.00 | 0.00 | 0.00026 | 0.00122 |
a3 | −0.37305 | 0.12131 | 0.00 | 0.00 | −0.61441 | −0.13168 |
a4 | 0.01722 | 0.01051 | 0.00 | 0.00 | −0.00369 | 0.03814 |
a5 | −2.06729 | 0.84950 | 0.00 | 0.00 | −3.75753 | −0.37704 |
a6 | 0.01600 | 0.00689 | 0.00 | 0.00 | 0.00229 | 0.02970 |
a7 | −0.00003 | 0.00001 | 0.00 | 0.00 | −0.00006 | −0.00000 |
a8 | −0.00013 | 0.00009 | 0.00 | 0.00 | −0.00029 | 0.00004 |
a9 | 0.00000 | 0.00000 | 0.00 | 0.00 | 0.00000 | 0.00000 |
Energy Yield, % | ||||||
---|---|---|---|---|---|---|
Model | energy yield, % = (500.253) + (0.00637136)·T2 + (−3.23363)·T + (0.179189)·t2 + (−20.5477)·t + (0.161123)·T·t + (−0.00031386)·T2·t + (−0.00135047)·T·t2 + (2.50551 × 10−6)·T2·t2 R2 = 0.83 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 500.2532 | 109.4272 | 0.00 | 0.00 | 282.5274 | 717.9791 |
a2 | 0.0064 | 0.0018 | 0.00 | 0.00 | 0.0028 | 0.0099 |
a3 | −3.2336 | 0.8872 | 0.00 | 0.00 | −4.9989 | −1.4684 |
a4 | 0.1792 | 0.0769 | 0.00 | 0.00 | 0.0262 | 0.3321 |
a5 | −20.5477 | 6.2130 | 0.00 | 0.00 | −32.9097 | −8.1858 |
a6 | 0.1611 | 0.0504 | 0.00 | 0.00 | 0.0609 | 0.2614 |
a7 | −0.0003 | 0.0001 | 0.00 | 0.00 | −0.0005 | −0.0001 |
a8 | −0.0014 | 0.0006 | 0.00 | 0.00 | −0.0026 | −0.0001 |
a9 | 0.0000 | 0.0000 | 0.00 | 0.00 | 0.0000 | 0.0000 |
H/C | ||||||
---|---|---|---|---|---|---|
Model | H/C = (6.15786) + (6.41009 × 10−5)·T2 + (−0.0338503)·T + (0.00373692)·t2 + (−0.263384)·t + (0.0021366)·T·t + (−4.4153 × 10−6)·T2·t + (−3.03887 × 10−5)·T·t2 + (6.18517 × 10−8)·T2·t2 R2 = 0.76 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 6.1579 | 4.1683 | 0 | 0 | −2.358 | 14.4515 |
a2 | 0.0001 | 0.0001 | 0 | 0 | −0.0001 | 0.0002 |
a3 | −0.0339 | 0.0338 | 0 | 0 | −0.1011 | 0.0334 |
a4 | 0.0037 | 0.0029 | 0 | 0 | −0.0021 | 0.0096 |
a5 | −0.2634 | 0.2367 | 0 | 0 | −0.7343 | 0.2075 |
a6 | 0.0021 | 0.0019 | 0 | 0 | −0.0017 | 0.0060 |
a7 | 0.0000 | 0.0000 | 0 | 0 | 0.0000 | 0.0000 |
a8 | 0.0000 | 0.0000 | 0 | 0 | −0.0001 | 0.0000 |
a9 | 0.0000 | 0.0000 | 0 | 0 | 0.0000 | 0.0000 |
O/C | ||||||
---|---|---|---|---|---|---|
Model | O/C = (2.85356) + (4.1663 × 10−5)·T2 + (−0.0202011)·T + (0.0038009)·t2 + (−0.246543)·t + (0.00208228)·T·t + (−4.3088 × 10−6)·T2·t + (−3.16778 × 10−7)·T·t2 + (6.4223 × 10−8)·T2·t2 R2 = 0.80 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 2.8536 | 1.8909 | 0 | 0 | −0.9087 | 6.6159 |
a2 | 0.0000 | 0.0000 | 0 | 0 | 0.0000 | 0.0001 |
a3 | −0.0202 | 0.0153 | 0 | 0 | −0.0507 | 0.0103 |
a4 | 0.0038 | 0.0013 | 0 | 0 | 0.0012 | 0.0064 |
a5 | −0.2465 | 0.1074 | 0 | 0 | −0.4602 | −0.0329 |
a6 | 0.0021 | 0.0009 | 0 | 0 | 0.0004 | 0.0038 |
a7 | 0.0000 | 0.0000 | 0 | 0 | 0.0000 | 0.0000 |
a8 | 0.0000 | 0.0000 | 0 | 0 | −0.0001 | 0.0000 |
a9 | 0.0000 | 0.0000 | 0 | 0 | 0.0000 | 0.0000 |
N, % d.m. | ||||||
---|---|---|---|---|---|---|
Model | N, % = (13.737) + (0.000154911)·T2 + (−0.0716041)·T + (−0.00987428)·t2 + (0.322928)·t + (−0.00346963)·T·t + (7.1607×10−6)·T2·t + (9.22803 × 10−5)·T·t2 + (−1.91518 × 10−7)·T2·t2 R2 = 0.83 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 13.73703 | 7.673398 | 0.00 | 0.00 | −1.53063 | 29.00468 |
a2 | 0.00015 | 0.000124 | 0.00 | 0.00 | −0.00009 | 0.00040 |
a3 | −0.07160 | 0.062214 | 0.00 | 0.00 | −0.19539 | 0.05218 |
a4 | −0.00987 | 0.005390 | 0.00 | 0.00 | −0.02060 | 0.00085 |
a5 | 0.32293 | 0.435677 | 0.00 | 0.00 | −0.54393 | 1.18979 |
a6 | −0.00347 | 0.003532 | 0.00 | 0.00 | −0.01050 | 0.00356 |
a7 | 0.00001 | 0.000000 | 0.00 | 0.00 | 0.00001 | 0.00001 |
a8 | 0.00009 | 0.000044 | 0.00 | 0.00 | 0.00001 | 0.00018 |
a9 | −0.00000 | 0.000000 | 0.00 | 0.00 | −0.00000 | −0.00000 |
Mg, mg·kg−1 | ||||||
---|---|---|---|---|---|---|
Model | Mg, mg·kg−1 = (1051.47) + (0.247677)·T2 + (−47.1368)·T + (5.53494)·t2 + (−538.67)·t + (10.2288)·T·t + (−0.0310345)·T2·t + (−0.122493)·T·t2 + (0.000382962)·T2·t2 R2 = 0.50 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 94.32113 | 57.65115 | 0.00 | 0.00 | −20.3866 | 209.0288 |
a2 | 0.00132 | 0.00093 | 0.00 | 0.00 | −0.0005 | 0.0032 |
a3 | −0.64647 | 0.46742 | 0.00 | 0.00 | −1.5765 | 0.2835 |
a4 | 0.11022 | 0.04050 | 0.00 | 0.00 | 0.0296 | 0.1908 |
a5 | −7.32599 | 3.27329 | 0.00 | 0.00 | −13.8388 | −0.8132 |
a6 | 0.06125 | 0.02654 | 0.00 | 0.00 | 0.0084 | 0.1141 |
a7 | −0.00013 | 0.00005 | 0.00 | 0.00 | −0.0002 | −0.0000 |
a8 | −0.00091 | 0.00033 | 0.00 | 0.00 | −0.0016 | −0.0003 |
a9 | 0.00000 | 0.00000 | 0.00 | 0.00 | 0.0000 | 0.0000 |
Ca, mg·kg−1 | ||||||
---|---|---|---|---|---|---|
Model | Ca, mg·kg−1 = (316658) + (5.82666)·T2 + (−2648.24)·T + (341.228)·t2 + (−23391.2)·t + (213.523)·T·t + (−0.468153)·T2·t + (−3.09572)·T·t2 + (0.00673435)·T2·t2 R2 = 0.32 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | 316658.0 | 485972.1 | 0.65 | 0.52 | −680474 | 1313790 |
a2 | 5.8 | 7.9 | 0.74 | 0.47 | −10 | 22 |
a3 | −2648.2 | 3936.8 | −0.67 | 0.51 | −10726 | 5429 |
a4 | 341.2 | 336.5 | 1.01 | 0.32 | −349 | 1032 |
a5 | −23391.2 | 27228.4 | −0.86 | 0.40 | −79259 | 32477 |
a6 | 213.5 | 220.5 | 0.97 | 0.34 | −239 | 666 |
a7 | −0.5 | 0.4 | −1.06 | 0.30 | −1 | 0 |
a8 | −3.1 | 2.7 | −1.14 | 0.27 | −9 | 2 |
a9 | 0.0 | 0.0 | 1.24 | 0.23 | 0 | 0 |
K, mg·kg−1 | ||||||
---|---|---|---|---|---|---|
Model | K, mg·kg−1 = (−7811.08) + (0.0132002)·T2 + (35.0213)·T + (−5.9302)·t2 + (432.779)·t + (−0.0448789)·T·t + (−0.00580631)·T2·t + (0.002207)·T·t2 + (7.25633 × 10−5)·T2·t2 R2 = 0.48 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | −7811.08 | 33686.23 | −0.23 | 0.82 | −76929.5 | 61307.36 |
a2 | 0.01 | 0.55 | 0.02 | 0.98 | −1.1 | 1.13 |
a3 | 35.02 | 272.89 | 0.13 | 0.90 | −524.9 | 594.95 |
a4 | −5.93 | 23.33 | −0.25 | 0.80 | −53.8 | 41.93 |
a5 | 432.78 | 1887.38 | 0.23 | 0.82 | −3439.8 | 4305.37 |
a6 | −0.04 | 15.28 | 0.00 | 1.00 | −31.4 | 31.32 |
a7 | −0.01 | 0.03 | −0.19 | 0.85 | −0.1 | 0.06 |
a8 | 0.00 | 0.19 | 0.01 | 0.99 | −0.4 | 0.39 |
a9 | 0.00 | 0.00 | 0.19 | 0.85 | 0.0 | 0.00 |
Na, mg·kg−1 | ||||||
---|---|---|---|---|---|---|
Model | Na, mg·kg−1 = (−41466.8) + (−0.577248)·T2 + (318.433)·T + (−49.4931)·t2 + (3620.2)·t + (−27.0631)·T·t + (0.0542841)·T2·t + (0.390176)·T·t2 + (−0.000809744)·T2·t2 R2 = 0.29 | |||||
Function Parameters | Value | Standard Error | t Value | p Value | Lower Confidence Limit | Upper Confidence Limit |
a1 | −41466.8 | 141846.8 | −0.29 | 0.77 | −332512 | 249,578.7 |
a2 | −0.6 | 2.3 | −0.25 | 0.80 | −5 | 4.1 |
a3 | 318.4 | 1149.1 | 0.28 | 0.78 | −2039 | 2676.2 |
a4 | −49.5 | 98.2 | −0.50 | 0.62 | −251 | 152.0 |
a5 | 3620.2 | 7947.5 | 0.46 | 0.65 | −12,687 | 19,927.1 |
a6 | −27.1 | 64.4 | −0.42 | 0.68 | −159 | 105.0 |
a7 | 0.1 | 0.1 | 0.42 | 0.68 | 0 | 0.3 |
a8 | 0.4 | 0.8 | 0.49 | 0.63 | −1 | 2.0 |
a9 | 0.0 | 0.0 | −0.51 | 0.61 | 0 | 0.0 |
References
- Heidrich, Z.; Tiunajtis, K. Ilość osadów pochodzących z wiejskich oczyszczalni ścieków i kierunki ich unieszkodliwiania. Infrastruktura i Ekologia Terenów Wiejskich 2008, 5, 191–198. Available online: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-95b2f868-8850-49fb-8644-99d72957c1f6/c/Heidrich.pdf (accessed on 29 December 2019).
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Jama-Rodzeńska, A.M.; Bocianowski, J.; Nowak, W.; Ciszek, D.; Nowosad, K. The influence of communal sewage sludge on the content of macroelements in the stem of selected clones of willow (Salix viminalis L.). Ecol. Eng. 2016, 87, 212–217. [Google Scholar] [CrossRef]
- Herzel, H.; Krüger, O.; Hermann, L.; Adam, C. Sewage sludge ash—A promising secondary phosphorus source for fertilizer production. Sci. Total. Environ. 2016, 542, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Environment. Central Statistical Office of Poland. 2018. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2018,1,10.html (accessed on 21 December 2019).
- Publications Office of the European Union. EUROSTAT: Regional Yearbook. Statistical Book; Eurostat: Luxembourg, 2017. Available online: https://ec.europa.eu/eurostat/documents/3217494/8222062/KS-HA-17-001-EN-N.pdf (accessed on 19 February 2020).
- Agopsowicz, M.; Białowiec, A.; Pijarczyk, P. Sewage sludge land disposal effects on ground water. Arch. Environ. Prot. 2008, 34, 73–82. [Google Scholar]
- Atienza–Martínez, M.; Gea, G.; Arauzo, J.; Kersten, S.R.; Kootstra, A.M.J. Phosphorus recovery from sewage sludge char ash. Biomass-Bioenergy 2014, 65, 42–50. [Google Scholar] [CrossRef]
- Robinson, J.S.; Baumann, K.; Hu, Y.; Hagemann, P.; Kebelmann, L.; Leinweber, P. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis. Ambio 2018, 47, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Mysior, M.; Tomaszewski, M.; Stępień, P.; Koziel, J.A.; Białowiec, A. Valorization of Sewage Sludge via Gasification and Transportation of Compressed Syngas. Process. 2019, 7, 556. [Google Scholar] [CrossRef] [Green Version]
- Wzorek, Z. The phosphorus compounds recovery from thermally treated waste and its use as a substitute of natural phosphorus raw materials. Monogr. 356. Ser. Inz. i Technol. Chem. 2008, 1–159. [Google Scholar]
- Pulka, J.; Wiśniewski, D.; Gołaszewski, J.; Białowiec, A. Is the biochar produced from sewage sludge a good quality solid fuel? Arch. Environ. Prot. 2016, 42, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Grilc, M.; Likozar, B.; Levec, J. Kinetic model of homogeneous lignocellulosic biomass solvolysis in glycerol and imidazolium-based ionic liquids with subsequent heterogeneous hydrodeoxygenation over NiMo/Al2O3 catalyst. Catal. Today 2015, 256, 302–314. [Google Scholar] [CrossRef]
- Faussone, G.C.; Grilc, M.; Likozar, B. Removal of inorganics from sludge and digestate: The BiAR process. Water Pr. Technol. 2017, 12, 937–941. [Google Scholar] [CrossRef]
- Grilc, M.; Likozar, B.; Levec, C. Simultaneous liquefaction and hydrodeoxygenation of lignocellulosic biomass over NiMo/Al2O3, Pd/Al2O3, and zeolite Y catalysts in hydrogen donor solvents. Chem. Cat. Chem. 2016, 8, 180–191. [Google Scholar] [CrossRef]
- Mimmo, T.; Panzacchi, P.; Baratieri, M.; Davies, C.; Tonon, G. Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass-Bioenergy 2014, 62, 149–157. [Google Scholar] [CrossRef]
- Kosov, V.F.; Kuzmina, J.S.; A Sytchev, G.; Zaichenko, V.M. Challenges and opportunities of torrefaction technology. J. Physics: Conf. Ser. 2016, 774, 012139. [Google Scholar] [CrossRef] [Green Version]
- Balogun, A.O.; Lasode, O.; McDonald, A.G. Thermo-physical, Chemical and Structural Modifications in Torrefied Biomass Residues. Waste Biomass-Valorization 2016, 9, 131–138. [Google Scholar] [CrossRef]
- Garba, M.U.; Gambo, S.; Musa, U.; Tauheed, K.; Alhassan, M.; Adeniyi, O. Impact of torrefaction on fuel property of tropical biomass feedstocks. Biofuels 2017, 9, 369–377. [Google Scholar] [CrossRef]
- Białowiec, A.; Micuda, M.; Koziel, J.A. Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel. Energies 2018, 11, 3233. [Google Scholar] [CrossRef] [Green Version]
- Świechowski, K.; Stegenta-Dąbrowska, S.; Liszewski, M.; Bąbelewski, P.; Koziel, J.A.; Białowiec, A. Oxytree Pruned Biomass Torrefaction: Process Kinetics. Materials 2019, 12, 3334. [Google Scholar] [CrossRef] [Green Version]
- Stępień, P.; Serowik, M.; Koziel, J.A.; Białowiec, A. Waste to Carbon: Estimating the Energy Demand for Production of Carbonized Refuse-Derived Fuel. Sustainability 2019, 11, 5685. [Google Scholar] [CrossRef] [Green Version]
- Syguła, E.; Koziel, J.A.; Białowiec, A. Proof-of-Concept of Spent Mushrooms Compost Torrefaction—Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal. Energies 2019, 12, 3060. [Google Scholar] [CrossRef] [Green Version]
- Stępień, P.; Świechowski, K.; Hnat; Kugler, S.; Dąbrowska, S.; Koziel, J.A.; Manczarski, P.; Białowiec, A.; Hnat, M.; Stegenta-Dąbrowska, S. Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel. Energies 2019, 12, 4344. [Google Scholar] [CrossRef] [Green Version]
- Kalus, K.; Koziel, J.A.; Opalinski, S. A Review of Biochar Properties and Their Utilization in Crop Agriculture and Livestock Production. Appl. Sci. 2019, 9, 3494. [Google Scholar] [CrossRef] [Green Version]
- Kammann, C.; Glaser, B.; Schmidt, H.-P. Combining Biochar and Organic Amendments. Biochar in European soils, Science and Practice; Routledge: London, UK, 2016; pp. 136–164. [Google Scholar]
- Glaser, B.; Parr, M.; Braun, C.; Kopolo, G. Biochar is carbon negative. Nat. Geosci. 2009, 2, 2. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.; Crowley, D. Biochar effects on soil biota—A review. Soil Boil. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, climate change and soil: A review to guide future research. In CSIRO Land and Water Science Report; CSIRO: Canberra, Aurtalia, 2009; pp. 1834–6618. [Google Scholar]
- Polish Law on renewable energy source. Pol. J. Laws 2015, 478. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000478/U/D20150478Lj.pdf (accessed on 19 February 2020).
- Bergman, P.C.A.; Kiel, J.H.A. Torrefaction for biomass upgrading. In Proceedings of the 14th European Biomass Conference & Exhibition, Paris, France, 17–21 October 2005. [Google Scholar]
- Wannapeera, J.; Fungtammasan, B.; Worasuwannarak, N. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. J. Anal. Appl. Pyrolysis 2011, 92, 99–105. [Google Scholar] [CrossRef]
- Verhoeff, F.; Arnuelos, A.A.; Boersma, R.; Pels, J.R.; Lensselink, J.; Kiel, J.H.A.; Schukken, H. Torrefaction Technology for the Production of Solid Bioenergy Carriers from Biomass and Waste; ECN-E-11-039; ECN: Petten, The Netherlands, 2011. [Google Scholar]
- Ratte, J.; Fardet, E.; Mateos, D.; Héry, J.-S. Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYD™ column. Biomass-Bioenergy 2011, 35, 3481–3495. [Google Scholar] [CrossRef]
- .Bergman, P.C.A. Combined Torrefaction and Pelletisation—The TOP Process; ECN Report, ECN-C-05-073; ECN: Petten, The Netherlands, 2005. [Google Scholar]
- Poudel, J.; Ohm, T.I.; Lee, S.-H.; Oh, S.C. A study on torrefaction of sewage sludge to enhance solid fuel qualities. Waste Manag. 2015, 40, 112–118. [Google Scholar] [CrossRef]
- Karki, S.; Poudel, J.; Oh, S.C. Thermal Pre-Treatment of Sewage Sludge in a Lab-Scale Fluidized Bed for Enhancing Its Solid Fuel Properties. Appl. Sci. 2018, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Hernández, A.B.; Okonta, F.; Freeman, N. Sewage sludge charcoal production by N2- and CO2-torrefaction. J. Environ. Chem. Eng. 2017, 5, 4406–4414. [Google Scholar] [CrossRef]
- Atienza-Martínez, M.; Mastral, J.F.; Ábrego, J.; Ceamanos, J.; Gea, G. Sewage Sludge Torrefaction in an Auger Reactor. Energy Fuels 2014, 29, 160–170. [Google Scholar] [CrossRef]
- Lim, D.-W.; Poudel, J.; Oh, S.C. A Study on Torrefaction Characteristics of Sewage Sludge. Appl. Chem. Eng. 2014, 25, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Pulka, J.; Manczarski, P.; Koziel, J.A.; Białowiec, A. Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars. Energies 2019, 12, 565. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK , 2009. [Google Scholar]
- Bach, Q.-V.; Tran, Q. Dry and Wet Torrefaction of Woody Biomass—A Comparative Studyon Combustion Kinetics. Energy Procedia 2015, 75, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Steinbeiss, S.; Gleixner, G.; Antonietti, M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Boil. Biochem. 2009, 41, 1301–1310. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Wang, Y.; Chen, Y.; Lei, T. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma 2016, 267, 17–23. [Google Scholar] [CrossRef]
- Yue, Y.; Cui, L.; Lin, Q.; Li, G.; Zhao, X. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere 2017, 173, 551–556. [Google Scholar] [CrossRef]
- Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, A. Co-composting of poultry manure mixtures amended with biochar—The effect of biochar on temperature and C-CO2 emission. Bioresour. Technol. 2016, 200, 921–927. [Google Scholar] [CrossRef]
- Malińska, K. Biowęgiel odpowiedzią na aktualne problemy ochrony środowiska. Inżynieria i Ochrona Środowiska 2012, 15, 387–403. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-848cbc3b-8a45-4906-b46a-a34dcc1812de/c/Malinska__Biowegiel_4_2012.pdf (accessed on 29 December 2019).
- Van Wesenbeeck, S.; Prins, W.; Ronsse, F.; Antal, M.J. Sewage Sludge Carbonization for Biochar Applications. Fate of Heavy Metals. Energy Fuels 2014, 28, 5318–5326. [Google Scholar] [CrossRef]
- Białowiec, A.; Pulka, J.; Stępień, P.; Manczarski, P.; Gołaszewski, J. The RDF/SRF torrefaction: An effect of temperature on characterization of the product - Carbonized Refuse Derived Fuel. Waste Manag. 2017, 70, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Solid Biofuels—Determination of moisture content-drier method—Part 1: Total moisture—Reference method; Polish Standard PN-EN 14774-1:2010E; Polski Komitet Normalizacyjny: Warsaw, Poland, 2010.
- Solid Biofuels—Determination of Volatile Compounds Content; Polish Standard PN-EN 15148:2010; Polski Komitet Normalizacyjny: Warsaw, Poland, 2010.
- Solid Fuels. Determination of Total Sulfur and Fly Ash with Automatic Analyzers; Polish Standard PN-G-04584:2001P; Polski Komitet Normalizacyjny: Warsaw, Poland, 2001.
- Solid Biofuels. Total Carbon, Ammonia and Hydrogen Determination; Polish Standard PN-EN ISO 16948:2015-07; Polski Komitet Normalizacyjny: Warsaw, Poland, 2015.
- Solid Fuels. Higher Heating Value Determination; Polish Standard PN-G-04513:1981; Polski Komitet Normalizacyjny: Warsaw, Poland, 1981.
- Foodstuffs—Determination of Trace Elements—Determination of Lead, Cadmium, Zinc, Copper, Iron and Chromium by Atomic Absorption Spectrometry (AAS) after Dry Ashing; Polish Standard PN-EN 14082:2004; Polski Komitet Normalizacyjny: Warsaw, Poland, 2004.
- Keipi, T.I.-M.; Tolvanen, H.; Kokko, L.; Raiko, R. The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples. Biomass-Bioenergy 2014, 66, 232–239. [Google Scholar] [CrossRef]
- Grigiante, M.; Antolini, D. Mass yield as guide parameter of the torrefaction process. An experimental study of the solid fuel properties referred to two types of biomass. Fuel 2015, 153, 499–509. [Google Scholar] [CrossRef]
- Basu, P. Biomass Characteristics. In Biomass Gasification, Pyrolysis and Torrefaction; Elsevier: Amsterdam, The Netherlands, 2013; pp. 49–91. ISBN 978-0-12-396488-5. [Google Scholar]
- Świechowski, K.; Liszewski, M.; Bąbelewski, P.; Koziel, J.A.; Białowiec, A. Oxytree Pruned Biomass Torrefaction: Mathematical Models of the Influence of Temperature and Residence Time on Fuel Properties Improvement. Materials 2019, 12, 2228. [Google Scholar] [CrossRef] [Green Version]
- Stepień, P.; Mysior, M.; Bialowiec, A. Problemy techniczne i technologiczne oraz potencjał aplikacyjny toryfikacji odpadów. In Innowacje w Gospodarce Odpadami, Praca Zbiorowa Pod Redakcją Andrzeja Białowca; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2018; ISBN 978-83-7717-278-0. [Google Scholar]
- Pellet Premium DIN Plus. Available online: http://kominkowybrykiet.pl/produkt/brykiet-kominkowy-typu-pinikay/ (accessed on 21 December 2019).
- Czekała, W.; Wojcieszak, D.; Lewicki, A.; Janczak, D.; Waliszewska, H.; Smurzynska, A. Nutrient Value of Digestate from Agricultural Biogas Plant in Poland. In Proceedings of the 2018 2nd International Conference on Green Energy and Applications (ICGEA), Singapore, 24–26 March 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 10–13. [Google Scholar]
- Atienza-Martínez, M.; Fonts, I.; Ábrego, J.; Ceamanos, J.; Gea, G. Sewage sludge torrefaction in a fluidized bed reactor. Chem. Eng. J. 2013, 222, 534–545. [Google Scholar] [CrossRef]
- Dhungana, A. Torrefaction of Biomass. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2011. [Google Scholar]
- Lin, X.; Wang, F.; Chi, Y.; Huang, Q.; Yan, J. A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition. Waste Manag. 2015, 36, 24–32. [Google Scholar] [CrossRef]
- Mock, C.; Lee, H.; Choi, S.; Manovic, V. Flame structures and ignition characteristics of torrefied and raw sewage sludge particles at rapid heating rates. Fuel 2017, 200, 467–480. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Sung, H.-T.; Chiueh, P.-T.; Lo, S.-L. Co-torrefaction of sewage sludge and leucaena by using microwave heating. Energy 2016, 116, 1–7. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Sung, H.-T.; Chiueh, P.-T.; Lo, S.-L. Microwave torrefaction of sewage sludge and leucaena. J. Taiwan Inst. Chem. Eng. 2017, 70, 236–243. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Wang, S.; Zhuang, L.; Yang, Y.; Qiu, R. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 137–143. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Regulation of the Polish Ministry of Agriculture and Rural Development on the Implementation of Crops. Fertilizers and Fertilization. Pol. J. Laws 2008, 119, 765. [Google Scholar]
- Waqas, M.; Khan, S.; Qing, H.; Reid, B.J.; Chao, C. The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 2014, 105, 53–61. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Nelson, P. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef]
- Song, X.; Xue, X.; Chen, D.; He, P.; Dai, X. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 2014, 109, 213–220. [Google Scholar] [CrossRef]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Muñoz, M.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef]
- Shinogi, Y.; Kanri, Y. Pyrolysis of plant, animal and human waste: Physical and chemical characterization of the pyrolytic products. Bioresour. Technol. 2003, 90, 241–247. [Google Scholar] [CrossRef]
Property | Value |
---|---|
dry mass,% | 20.3 |
loss on ignition,% d.m. | 57.2 |
ash,% d.m. | 38.5 |
LHV, MJ·kg−1 | 0.4 |
HHV, MJ·kg−1 | 12.2 |
HHV daf. MJ·kg−1 | 20.6 |
C,% d.m. | 27.9 |
H,% d.m. | 3.7 |
N,% d.m. | 4.3 |
S,% d.m. | 1.6 |
O,% d.m. | 23.9 |
H/C ratio | 1.6 |
O/C ratio | 0.6 |
Mg, mg·kg−1, d.m. | 2,643 |
Ca, mg·kg−1, d.m. | 14,640 |
K, mg·kg−1, d.m. | 1535 |
Na, mg·kg−1, d.m. | 3511 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulka, J.; Manczarski, P.; Stępień, P.; Styczyńska, M.; Koziel, J.A.; Białowiec, A. Waste-to-Carbon: Is the Torrefied Sewage Sludge with High Ash Content a Better Fuel or Fertilizer? Materials 2020, 13, 954. https://doi.org/10.3390/ma13040954
Pulka J, Manczarski P, Stępień P, Styczyńska M, Koziel JA, Białowiec A. Waste-to-Carbon: Is the Torrefied Sewage Sludge with High Ash Content a Better Fuel or Fertilizer? Materials. 2020; 13(4):954. https://doi.org/10.3390/ma13040954
Chicago/Turabian StylePulka, Jakub, Piotr Manczarski, Paweł Stępień, Marzena Styczyńska, Jacek A. Koziel, and Andrzej Białowiec. 2020. "Waste-to-Carbon: Is the Torrefied Sewage Sludge with High Ash Content a Better Fuel or Fertilizer?" Materials 13, no. 4: 954. https://doi.org/10.3390/ma13040954
APA StylePulka, J., Manczarski, P., Stępień, P., Styczyńska, M., Koziel, J. A., & Białowiec, A. (2020). Waste-to-Carbon: Is the Torrefied Sewage Sludge with High Ash Content a Better Fuel or Fertilizer? Materials, 13(4), 954. https://doi.org/10.3390/ma13040954