Processing and Mechanical Properties of Ti2AlC MAX Phase Reinforced AE44 Magnesium Composite
Abstract
:1. Introduction
2. Experimental Methods
2.1. Fabrication Procedure
2.2. Microstructure Characterization
2.3. Mechanical Properties
3. Results and Discussion
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pekguleryuz, M.O.; Kaya, A.A. Creep Resistant Magnesium Alloys for Powertrain Applications. Adv. Eng. Mater. 2010, 5, 866–878. [Google Scholar] [CrossRef]
- Powell, B.R.; Krajewski, P.E.; Luo, A.A. Magnesium alloys for lightweight powertrains and automotive structures. Mater. Design Manuf. Lightweight Veh. 2010, 80, 114–173. [Google Scholar]
- Xue, Y.; Horstemeyer, M.F.; McDowell, D.L.; El Kadir, H.; Fan, J. Microstructure-based multistage fatigue modeling of a cast AE44 magnesium alloy. Int. J. Fatigue 2007, 29, 666–676. [Google Scholar] [CrossRef]
- Zhu, S.; Wong, C.; Styles, M.J.; Abbott, T.B.; Nie, J.-F.; Easton, M.A. Revisiting the intermetallic phases in high-pressure die-cast Mg–4Al–4Ce and Mg–4Al–4La alloys. Mater. Charact. 2019, 156, 109839. [Google Scholar] [CrossRef]
- Hu, B.; Peng, L.M.; Powell, B.R.; Balough, M.P.; Kubic, R.C.; Sachdev, A.K. Interfacial and fracture behavior of short-fibers reinforced AE44 based magnesium matrix composites. J. Alloy Compd. 2010, 504, 527–534. [Google Scholar] [CrossRef]
- Mondet, M.; Barraud, E.; Lemonnier, S.; Guyon, J.; Allain, N.; Grosdidier, T. Microstructure and mechanical properties of AZ91 magnesium alloy developed by Spark Plasma Sintering. Acta Mater. 2016, 119, 55–67. [Google Scholar] [CrossRef]
- Tjong, S.C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R Rep. 2013, 74, 281–350. [Google Scholar] [CrossRef]
- Wang, X.J.; Xu, D.K.; Wu, R.Z.; Chen, X.B.; Peng, Q.M.; Jin, L.; Xin, Y.C.; Zhang, Z.Q.; Liu, Y.; Chen, X.H.; et al. What is going on in magnesium alloys? J. Mater. Sci. Technol. 2018, 34, 245–247. [Google Scholar] [CrossRef]
- Wang, X.J.; Deng, K.K.; Liang, W. High temperature damping behavior controlled by submicron SiCp in bimodal size particle reinforced magnesium matrix composite. Mater. Sci. Eng. A 2016, 668, 55–58. [Google Scholar] [CrossRef]
- Deng, K.K.; Li, J.C.; Nie, K.B.; Wang, X.J.; Fan, J.F. High temperature damping behavior of as-deformed Mg matrix influenced by micron and submicron SiCp. Mater. Sci. Eng. A 2015, 624, 62–70. [Google Scholar] [CrossRef]
- Das, A.; Harimkar, S.P. Effect of Graphene Nanoplate and Silicon Carbide Nanoparticle Reinforcement on Mechanical and Tribological Properties of Spark Plasma Sintered Magnesium Matrix Composites. J. Mater. Sci. Technol. 2014, 30, 1059–1070. [Google Scholar] [CrossRef]
- Wu, Y.W.; Wu, K.; Nie, K.B.; Deng, K.K.; Hu, X.S.; Wang, X.J.; Zheng, M.Y. Damping capacities and tensile properties in Grp/AZ91 and SiCp/Grp/AZ91 magnesium matrix composites. Mater. Sci. Eng. A 2010, 527, 7873–7877. [Google Scholar] [CrossRef]
- Wu, Y.W.; Wu, K.; Deng, K.K.; Nie, K.B.; Wang, X.J.; Hu, X.S.; Zheng, M.Y. Damping capacities and tensile properties of magnesium matrix composites reinforced by graphite particles. Mater. Sci. Eng. A 2010, 527, 6816–6821. [Google Scholar] [CrossRef]
- García-Rodríguez, S.; Torres, B.; Maroto, A.; López, A.J.; Otero, E.; Rams, J. Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp composites. Wear 2017, 390–391, 1–10. [Google Scholar] [CrossRef]
- Shang, S.-j.; Deng, K.-k.; Nie, K.-b.; Li, J.-c.; Zhou, S.-s.; Xu, F.-j.; Fan, J.-f. Microstructure and mechanical properties of SiCp/Mg–Al–Zn composites containing Mg17Al12 phases processed by low-speed extrusion. Mater. Sci. Eng. A 2014, 610, 243–249. [Google Scholar] [CrossRef]
- Poddar, P.; Srivastava, V.C.; De, P.K.; Sahoo, K.L. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process. Mater. Sci. Eng. A 2007, 460, 357–364. [Google Scholar] [CrossRef]
- Anasori, B.; Amini, S.; Presser, V.; Barsoum, M.W. Nanocrystalline Mg-matrix composites with ultrahigh damping properties. Magnes. Technol. 2011, 463–468. [Google Scholar] [CrossRef]
- Anasori, B.; Caspi, E.A.N.; Barsoum, M.W. Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles. Mater. Sci. Eng. A 2014, 618, 511–522. [Google Scholar] [CrossRef]
- Wang, X.; Wang, N.; Wang, L.; Hu, X.; Wu, K.; Wang, Y.; Huang, Y. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater. Des. 2014, 57, 638–645. [Google Scholar] [CrossRef]
- Yu, W.; Li, X.; Vallet, M.; Tian, L. High temperature damping behavior and dynamic Youngs modulus of magnesium matrix composite reinforced by Ti2AlC MAX phase particles. Mech. Mater. 2019, 129, 246–253. [Google Scholar] [CrossRef]
- Yu, W.; Wang, X.; Zhao, H.; Ding, C.; Huang, Z.; Zhai, H.; Guo, Z.; Xiong, S. Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting. J. Alloy. Compd. 2017, 702, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, M.W. The MN+1AXN phases: A new class of solids. Prog. Solid State Chem. 2000, 28, 201–281. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Radovic, M. Elastic and Mechanical Properties of the MAX Phases. Annu. Rev. Mater. Res. 2011, 41, 195–227. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhou, Y.C. Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review. J. Mater. Sci. Technol. 2010, 26, 385–416. [Google Scholar] [CrossRef]
- Yu, W.; Vallet, M.; Levraut, B.; Gauthier-Brunet, V.; Dubois, S. Oxidation mechanisms in bulk Ti2AlC: influence of the grain size. J. the Eur. Ceram. Soc. 2020, 40, 1820–1828. [Google Scholar] [CrossRef]
- Guitton, A.; Van Petegem, S.; Tromas, C.; Joulain, A.; Van Swygenhoven, H.; Thilly, L. Effect of microstructure anisotropy on the deformation of MAX polycrystals studied by in-situ compression combined with neutron diffraction. Appl. Phys. Lett. 2014, 104, 201. [Google Scholar] [CrossRef] [Green Version]
- Guitton, A.; Joulain, A.; Thilly, L.; Tromas, C. Dislocation analysis of Ti2AlN deformed at room temperature under confining pressure. Philos. Mag. 2012, 92, 4536–4546. [Google Scholar] [CrossRef]
- Guitton, A.; Joulain, A.; Thilly, L.; Tromas, C. Evidence of dislocation cross-slip in MAX phase deformed at high temperature. Sci. Rep. 2014, 4, 6358. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Mauchamp, V.; Cabioc’h, T.; Magne, D.; Gence, L.; Piraux, L.; Gauthier-Brunet, V.; Dubois, S. Solid solution effects in the Ti2Al(CxNy) MAX phases: Synthesis, microstructure, electronic structure and transport properties. Acta Mater. 2014, 80, 421–434. [Google Scholar] [CrossRef]
- Cai, L.P.; Huang, Z.Y.; Hu, W.Q.; Hao, S.M.; Zhai, H.X.; Zhou, Y. Fabrication, mechanical properties, and tribological behaviors of Ti2AlC and Ti2AlSn0.2C solid solutions. J. Adv. Ceram. 2017, 6, 90–99. [Google Scholar] [CrossRef]
- Xu, L.D.; Zhu, D.G.; Grasso, S.; Suzuki, T.; Kasahara, A.; Tosa, M.; Kim, B.n.; Sakka, Y.; Zhu, M.H.; Hu, C.F. Effect of texture microstructure on tribological properties of tailored Ti3AlC2 ceramic. J. Adv. Ceram. 2017, 6, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Chen, D.; Tian, L.; Zhao, H.; Wang, X. Self-lubricate and anisotropic wear behavior of AZ91D magnesium alloy reinforced with ternary Ti2AlC MAX phases. J. Mater. Sci. Technol. 2019, 35, 275–284. [Google Scholar] [CrossRef]
- Lenny, J., Jr. Replacing the Cast Iron Liners for Aluminum Engine Cylinder Blocks: A Comparative Assessment of Potential Candidates. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.698.7932&rep=rep1&type=pdf (accessed on 18 February 2020).
- Yu, W.; Zhao, H.; Wang, X.; Wang, L.; Xiong, S.; Huang, Z.; Li, S.; Zhou, Y.; Zhai, H. Synthesis and characterization of textured Ti2AlC reinforced magnesium composite. J. Alloy. Compd. 2018, 730, 191–195. [Google Scholar] [CrossRef]
- Bahador, A.; Umeda, J.; Hamzah, E.; Yusof, F.; Li, X.; Kondoh, K. Synergistic strengthening mechanisms of copper matrix composites with TiO2 nanoparticles. Mater. Sci. Eng. A 2020, 772, 138797. [Google Scholar] [CrossRef]
- Li, J.C.; Nie, K.B.; Deng, K.K.; Shang, S.J.; Zhou, S.S.; Xu, F.J.; Fan, J.F. Microstructure stability of as-extruded bimodal size SiCp/AZ91 composite. Mater. Sci. Eng. A 2014, 615, 489–496. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Z.; Cai, L.; Lei, C.; Zhai, H.; Hao, S.; Yu, W.; Zhou, Y. Preparation and mechanical properties of TiCx-Ni3(Al,Ti)/Ni composites synthesized from Ni alloy and Ti3AlC2 powders. Mater. Sci. Eng. A 2017, 697, 48–54. [Google Scholar] [CrossRef]
- Bramfitt, B.L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Mater. Trans. B 1970, 1, 19871995. [Google Scholar] [CrossRef]
- Turnbull, D.; Vonnegut, B. Nucleation Catalysis. Ind. Eng. Chem. 1952, 44, 1292–1298. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, H.; Hu, X. Anisotropic mechanical and physical properties in textured Ti2AlC reinforced AZ91D magnesium composite. Ind. Eng. Chem. 2018, 732, 894–901. [Google Scholar] [CrossRef]
- Wang, B.; Xin, R.; Huang, G.; Liu, Q. Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression. Mater. Sci. Eng. A 2012, 534, 588–593. [Google Scholar] [CrossRef]
Materials | Density (g/cm3) | TYS (MPa) | UTS (MPa) | Elongation (%) | UCS (MPa) |
---|---|---|---|---|---|
As-cast AE44 | 1.81 | 88 ± 20 | 149 ± 20 | 4.9 ± 0.8 | 264 ± 5 |
Extruded AE44 | 1.83 | 250 ± 10 | 397 ± 10 | 12.2 ± 1.0 | 414 ± 5 (c // ED axis) |
313 ± 5 (c ⊥ ED axis) | |||||
As-cast Ti2AlC-AE44 | 2.14 | 179 ± 20 | 200 ± 20 | 2.6 ± 1.2 | 371 ± 5 |
Extruded Ti2AlC-AE44 | 2.16 | 316 ± 10 | 416 ± 10 | 4.4 ± 1.1 | 516 ± 5 (c // ED axis) |
394 ± 5 (c ⊥ ED axis) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pi, X.; Yu, W.; Ma, C.; Wang, X.; Xiong, S.; Guitton, A. Processing and Mechanical Properties of Ti2AlC MAX Phase Reinforced AE44 Magnesium Composite. Materials 2020, 13, 995. https://doi.org/10.3390/ma13040995
Pi X, Yu W, Ma C, Wang X, Xiong S, Guitton A. Processing and Mechanical Properties of Ti2AlC MAX Phase Reinforced AE44 Magnesium Composite. Materials. 2020; 13(4):995. https://doi.org/10.3390/ma13040995
Chicago/Turabian StylePi, Xufeng, Wenbo Yu, Chaosheng Ma, Xiaojun Wang, ShouMei Xiong, and Antoine Guitton. 2020. "Processing and Mechanical Properties of Ti2AlC MAX Phase Reinforced AE44 Magnesium Composite" Materials 13, no. 4: 995. https://doi.org/10.3390/ma13040995
APA StylePi, X., Yu, W., Ma, C., Wang, X., Xiong, S., & Guitton, A. (2020). Processing and Mechanical Properties of Ti2AlC MAX Phase Reinforced AE44 Magnesium Composite. Materials, 13(4), 995. https://doi.org/10.3390/ma13040995