Chlorapatite Derived from Fish Scales
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Chlorapatite Powder from Fish Scale
2.2. Fish Scale and Chlorapatite Powder Characterizations
3. Results and Discussion
3.1. Thermo-Gravimetric Analysis
3.2. X-Ray Diffraction
3.3. FTIR Spectra Analysis
3.4. Powder Morphology
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Denry, I.; Kuhn, L.T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent. Mater. 2016, 32, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, S.; Das, M.; Balla, V.K. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells. Mater. Sci. Eng. C 2014, 39, 336–339. [Google Scholar]
- Oesterle, A.; Boehm, A.; Müller, F. Photoluminescent Eu3+-doped calcium phosphate bone cement and its mechanical properties. Materials 2018, 11, 1610. [Google Scholar]
- Alhamdi, J.; Jacobs, E.; Gronowicz, G.; Benkirane-Jessel, N.; Hurley, M.; Kuhn, L. Cell type influences local delivery of biomolecules from a bioinspired apatite drug delivery system. Materials 2018, 11, 1703. [Google Scholar] [CrossRef] [Green Version]
- Murgolo, S.; Moreira, I.; Piccirillo, C.; Castro, P.; Ventrella, G.; Cocozza, C.; Mascolo, G. Photocatalytic degradation of diclofenac by hydroxyapatite–TiO2 composite material: Identification of transformation products and assessment of Toxicity. Materials 2018, 11, 1779. [Google Scholar] [CrossRef] [Green Version]
- Iconaru, S.; Motelica-Heino, M.; Guegan, R.; Beuran, M.; Costescu, A.; Predoi, D. Adsorption of Pb (II) ions onto hydroxyapatite nanopowders in aqueous solutions. Materials 2018, 11, 2204. [Google Scholar]
- Nzihou, A.; Sharrock, P. Role of phosphate in the remediation and reuse of heavy metal polluted wastes and sites. Waste Biomass Valor. 2010, 1, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Chiarathanakrit, C.; Riyajan, S.A.; Kaewtatip, K. Transforming fish scale waste into an efficient filler for starch foam. Carbohydr. Polym. 2018, 188, 48–53. [Google Scholar] [CrossRef]
- Yang, R.Y.; Peng, Y.M.; Lai, H.L.; Su, Y.K.; Chang, S.J. The optimum sintering condition for KSrPO4: Eu3+ phosphors applied in WLEDs. Ceram. Int. 2017, 43, S682–S687. [Google Scholar] [CrossRef]
- Fihri, A.; Len, C.; Varma, R.S.; Solhy, A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 2017, 347, 48–76. [Google Scholar] [CrossRef]
- Sunil, B.R.; Jagannatham, M. Producing hydroxyapatite from fish bones by heat treatment. Mater. Lett. 2016, 185, 411–414. [Google Scholar] [CrossRef]
- Ofudje, E.A.; Rajendran, A.; Adeogun, A.I.; Idowu, M.A.; Kareem, S.O.; Pattanayak, D.K. Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications. Adv. Powder Technol. 2018, 29, 1–8. [Google Scholar] [CrossRef]
- Panda, N.N.; Pramanik, K.; Sukla, L.B. Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold. Bioprocess Biosyst. Eng. 2014, 37, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-C.; Tsou, H.K.; Hsu, H.C.; Hsu, S.K.; Liou, S.P.; Ho, W.F. A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram. Int. 2013, 39, 8183–8188. [Google Scholar] [CrossRef]
- Dhanaraj, K.; Suresh, G. Conversion of waste sea shell (Anadara granosa) into valuable nanohydroxyapatite (nHAp) for biomedical applications. Vacuum 2018, 152, 222–230. [Google Scholar] [CrossRef]
- Paul, S.; Pal, A.; Choudhury, A.R.; Bodhak, S.; Balla, V.K.; Sinha, A.; Das, M. Effect of trace elements on the sintering effect of fish scale derived hydroxyapatite and its bioactivity. Ceram. Int. 2017, 43, 15678–15684. [Google Scholar] [CrossRef]
- Pon-On, W.; Suntornsaratoon, P.; Charoenphandhu, N.; Thongbunchoo, J.; Krishnamra, N.; Tang, I.M. Synthesis and investigations of mineral ions-loaded apatite from fish scale and PLA/chitosan composite for bone scaffolds. Mater. Lett. 2018, 221, 143–146. [Google Scholar] [CrossRef]
- Prasad, A.; Bhasney, S.; Katiyar, V.; Ravi Sankar, M. Biowastes processed hydroxyapatite filled poly (lactic acid) bio-composite for open reduction internal fixation of small bones. Mater. Today: Proc. 2017, 4, 10153–10157. [Google Scholar] [CrossRef]
- Kannan, S.; Rocha, J.H.G.; Ferreira, J.M.F. Synthesis of hydroxy-chlorapatites solid solutions. Mater. Lett. 2006, 60, 864–868. [Google Scholar] [CrossRef]
- Piccirillo, C.; Pullar, R.C.; Tobaldi, D.M.L.; Castro, P.M.; Pintado, M.E. Hydroxyapatite and chloroapatite derived from sardine by-products. Ceram. Int. 2014, 40, 13231–13240. [Google Scholar] [CrossRef]
- Wang, W.N.; Kaihatsu, Y.; Iskandar, F.; Okuyama, K. Highly Luminous Hollow Chloroapatite Phosphors Formed by a Template-Free Aerosol Route for Solid-State Lighting. Chem. Mater. 2009, 21, 4685–4691. [Google Scholar] [CrossRef]
- Demnati, I.; Grossin, D.; Marsan, O.; Bertrand, G.; Collonges, G.; Combes, C.; Parco, M.; Braceras, I.; Alexis, J.; Balcaen, Y.; et al. Comparison of physical-chemical and mechanical properties of chlorapatite and hydroxyapatite plasma sprayed coatings. Open Biomed. Eng. J. 2015, 9, 42–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Yang, G.; Wang, S.; Tian, J.; Li, X.; Guo, Q.; Fu, G. A novel green-emitting phosphor NaCaPO4: Eu2+ for white LEDs. Mater. Lett. 2008, 62, 1884–1886. [Google Scholar] [CrossRef]
- Shi, L.; Huang, Y.; Seo, H.J. Emission Red Shift and Unusual Band Narrowing of Mn2+ in NaCaPO4 Phosphor. J. Phys. Chem. A 2010, 114, 6927–6934. [Google Scholar] [CrossRef]
- Hingwe, V.S.; Bajaj, N.S.; Omanwar, S.K. Eu3+ doped N-UV emitting LiSrPO4 phosphor for W-LED application. Optik 2017, 130, 149–153. [Google Scholar] [CrossRef]
- Ratnam, B.V.; Sahu, M.K.; Vishwakarma, A.K.; Jha, K.; Woo, H.J.; Jang, K.; Jayasimhadri, M. Optimization of synthesis technique and luminescent properties in Eu3+ -activated NaCaPO4 phosphor for solid state lighting applications. J. Lumin. 2017, 185, 99–105. [Google Scholar] [CrossRef]
- Shinde, K.N.; Dhoble, S.J.; Kumar, A. Photoluminescence studies of NaCaPO4:RE (RE = Dy3+, Mn2+ or Gd3+). Phys. B Condens. Matter 2011, 406, 94–99. [Google Scholar] [CrossRef]
- Shinde, K.; Dhoble, S.; Kumar, A. Combustion synthesis of Ce3+, Eu3+ and Dy3+ activated NaCaPO4 phosphors. J. Rare Earth. 2011, 29, 527–535. [Google Scholar] [CrossRef]
- Pal, A.; Paul, S.; Choudhury, A.R.; Balla, V.K.; Das, M.; Sinha, A. Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications. Mater. Lett. 2017, 203, 89–92. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley Publishing: Boston, MA, USA, 1956. [Google Scholar]
- Takeno, M.L.; da Silva, G.A.; Trichês, D.M.; Ghosh, A.; de Souza, S.M. Structural studies of the layered SnSe produced by mechanical alloying and melting technique. J. Alloy. Compd. 2018, 735, 489–495. [Google Scholar] [CrossRef]
- Pati, F.; Adhikari, B.; Dhara, S. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour. Technol. 2010, 101, 3737–3742. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; Dean, D.R.; Jose, M.V.; Mathew, B.; Chowdhury, S.; Vohra, Y.K. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules 2007, 8, 631–637. [Google Scholar] [CrossRef]
- Lin, Y.S.; Wei, C.T.; Olevsky, E.A.; Meyers, M.A. Mechanical properties and the laminate structure of Arapaima gigas scales. J. Mech. Behav. Biomed. Mater. 2011, 4, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Gao, Y.; Iqbal, F.; Ahmad, P.; Ge, R.; Nishan, U.; Rahim, A.; Gonfa, G.; Ullah, Z. Extraction of biocompatible hydroxyapatite from fish scales using novel approach of ionic liquid pretreatment. Sep. Purif. Technol. 2016, 161, 129–135. [Google Scholar] [CrossRef]
- Elliot, J.C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Stephens, P.W. Phenomenological model of anisotropic peak broadening in powder diffraction. J Appl Crystallogr 1999, 32, 281–289. [Google Scholar] [CrossRef]
- Ganjali, M.; Pourhashem, S.; Mozafari, M. The effect of heat-treatment on the structural characteristics of nanocrystalline chlorapatite particles synthesized via an in situ wet-chemical route. Ceram. Int. 2015, 41, 13100–13104. [Google Scholar] [CrossRef]
- Sathiskumar, S.; Vanaraj, S.; Sabarinathan, D.; Bharath, S.; Sivarasan, G.; Arulmani, S.; Preethi, K.; Ponnusamy, V.K. Green synthesis of biocompatible nanostructured hydroxyapatite from Cirrhinus mrigala fish scale—A biowaste to biomaterial. Ceram. Int. 2019, 45, 7804–7810. [Google Scholar] [CrossRef]
- Pandele, A.M.; Constantinescu, A.; Radu, I.C.; Miculescu, F.; Ioan Voicu, S.; Ciocan, L.T. Synthesis and characterization of pla-micro-structured hydroxyapatite composite films. Materials 2020, 13, 274. [Google Scholar] [CrossRef] [Green Version]
- Sofronia, A.M.; Baies, R.; Anghel, E.M.; Marinescu, C.A.; Tanasescu, S. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Mater. Sci. Eng. C 2014, 43, 153–163. [Google Scholar] [CrossRef]
- Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, H.; da Silva, V.H.P.; Ruiz, P.L.M.; Ussui, V.; Lazar, D.R.R.; Renno, A.C.M.; Ribeiro, D.A. Physico-chemical characterization and biocompatibility of hydroxyapatite derived from fish waste. J. Mech. Behav. Biomed. Mater. 2018, 80, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Ruys, A. Processing, structure, and properties of alumina ceramics. In Alumina Ceramics: Biomedical and Clinical Applications, 4th ed.; Woodhead Publishing: Duxford, UK, 2018; pp. 71–121. [Google Scholar]
- García-Tuñón, E.; Couceiro, R.; Franco, J.; Saiz, E.; Guitián, F. Synthesis and characterisation of large chlorapatite single-crystals with controlled morphology and surface roughness. J Mater Sci: Mater. Med. 2012, 23, 2471–2482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.; Balakrishnan, P.; Sreekala, M.S. Fundamental Biomaterials: Ceramics; Woodhead Publishing: Duxford, UK, 2018. [Google Scholar]
- Ito, A.; Otsuka, Y.; Takeuchi, M.; Tanaka, H. Mechanochemical synthesis of chloroapatite and its characterization by powder X-ray diffractometory and attenuated total reflection-infrared spectroscopy. Colloid. Polym. Sci. 2017, 295, 2011–2018. [Google Scholar] [CrossRef]
- Widatallah, H.M.; Johnson, C.; Gismelseed, A.M.; Al-Omari, I.A.; Stewart, S.J.; Al-Harthi, S.H.; Thomas, S.; Sitepu, H. Structural and magnetic studies of nanocrystalline Mg-doped Li0.5Fe2.5O4 particles prepared by mechanical milling. J. Phys. D Appl. Phys. 2008, 41, 165006. [Google Scholar] [CrossRef]
Sample | Calcination Temperature (°C) | ClAp (wt%) | NaCl (wt%) | NaCaPO4 (wt%) | Crystallite Size (nm) | Rwp (%) | χ2 (%) |
---|---|---|---|---|---|---|---|
ClAp600 | 600 | 85.8 | 14.2 | 0 | 28 ± 5 | 6.76 | 3.21 |
ClAp800 | 800 | 74.8 | 16.1 | 9.1 | 78 ± 12 | 7.98 | 4.82 |
ClAp1000 | 1000 | 87.4 | 6.1 | 6.5 | 65 ± 8 | 9.02 | 5.96 |
Absorption Region (cm−1) | Intensity | Designation |
---|---|---|
3400 | Strong | stretch OH–Cl |
2920 | Weak | group stretching C–H |
1636 | Medium | ٧1 symmetric stretching CO32− |
1088, 1046, and 959 | Strong | ٧3 anti-symmetric stretch PO43− |
605, 565, and 473 | Strong | ٧1 symmetric stretching PO43− |
Sample | Atomic % | Ca/P | Ca/Cl | |||||
---|---|---|---|---|---|---|---|---|
O | Ca | P | C | Cl | Na | |||
ClAp600 | 39.14 ± 0.83 | 5.20 ± 0.23 | 3.81 ± 0.18 | 48.00 ± 1.2 | 1.61 ± 0.14 | 2.19 ± 0.07 | 1.36 | 3.22 |
ClAp800 | 51.96 ± 8.02 | 8.62 ± 2.28 | 6.00 ± 1.69 | 26.26 ±10.9 | 3.23 ± 0.55 | 3.95 ± 0.54 | 1.44 | 2.67 |
ClAp1000 | 64.26 ± 3.34 | 14.00 ± 0.90 | 9.93 ± 0.44 | 2.90 ± 3.87 | 3.65 ± 1.18 | 4.98 ± 1.12 | 1.41 | 3.84 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalcante, L.d.A.; Ribeiro, L.S.; Takeno, M.L.; Aum, P.T.P.; Aum, Y.K.P.G.; Andrade, J.C.S. Chlorapatite Derived from Fish Scales. Materials 2020, 13, 1129. https://doi.org/10.3390/ma13051129
Cavalcante LdA, Ribeiro LS, Takeno ML, Aum PTP, Aum YKPG, Andrade JCS. Chlorapatite Derived from Fish Scales. Materials. 2020; 13(5):1129. https://doi.org/10.3390/ma13051129
Chicago/Turabian StyleCavalcante, Luyara de Almeida, Laís Sibaldo Ribeiro, Mitsuo Lopes Takeno, Pedro Tupa Pandava Aum, Yanne Katiussy Pereira Gurgel Aum, and Jean Carlos Silva Andrade. 2020. "Chlorapatite Derived from Fish Scales" Materials 13, no. 5: 1129. https://doi.org/10.3390/ma13051129
APA StyleCavalcante, L. d. A., Ribeiro, L. S., Takeno, M. L., Aum, P. T. P., Aum, Y. K. P. G., & Andrade, J. C. S. (2020). Chlorapatite Derived from Fish Scales. Materials, 13(5), 1129. https://doi.org/10.3390/ma13051129