Experimental Investigation on Machinability of Polypropylene Reinforced with Miscanthus Fibers and Biochar
Abstract
:1. Introduction
2. Experimental Setup
2.1. Workpiece Material
2.2. Experimental Procedure
3. Results and Discussion
3.1. Thrust Force
3.2. Specific Cutting Energy for Thrust Force
3.3. Surface Roughness
3.3.1. The Arithmetic Average Roughness (Ra)
3.3.2. Maximum Height of Profile (Rt)
3.4. Dust Emission during Drill Process
3.4.1. Fine Particle Emission
3.4.2. Ultrafine Particle (UFP) Emission
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Koronis, G.; Silva, A.; Fontul, M. Green composites: A review of adequate materials for automotive applications. Compos. Part B Eng. 2013, 44, 120–127. [Google Scholar] [CrossRef]
- Sheikh-Ahmad, J.Y. Machining of Polymer Composites; Springer: Berlin, Germany, 2009; Volume 387355391. [Google Scholar]
- Nassar, M.M.; Arunachalam, R.; Alzebdeh, K.I. Machinability of natural fiber reinforced composites: A review. Int. J. Adv. Manuf. Technol. 2017, 88, 2985–3004. [Google Scholar] [CrossRef]
- Debnath, K.; Singh, I.; Dvivedi, A. On the analysis of force during secondary processing of natural fiber-reinforced composite laminates. Polym. Compos. 2017, 38, 164–174. [Google Scholar] [CrossRef]
- Bajpai, P.K.; Singh, I. Drilling behavior of sisal fiber-reinforced polypropylene composite laminates. J. Reinf. Plast. Compos. 2013, 32, 1569–1576. [Google Scholar] [CrossRef]
- Rezghi Maleki, H.; Hamedi, M.; Kubouchi, M.; Arao, Y. Experimental study on drilling of jute fiber reinforced polymer composites. J. Compos. Mater. 2019, 53, 283–295. [Google Scholar] [CrossRef]
- Ismail, S.O.; Dhakal, H.N.; Popov, I.; Beaugrand, J. Comprehensive study on machinability of sustainable and conventional fibre reinforced polymer composites. Eng. Sci. Technol. Int. J. 2016, 19, 2043–2052. [Google Scholar] [CrossRef]
- Abilash, N.; Sivapragash, M. Optimizing the delamination failure in bamboo fiber reinforced polyester composite. J. King Saud Univ. Eng. Sci. 2016, 28, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Venkateshwaran, N.; ElayaPerumal, A. Hole quality evaluation of natural fiber composite using image analysis technique. J. Reinf. Plast. Compos. 2013, 32, 1188–1197. [Google Scholar] [CrossRef]
- Chegdani, F.; El Mansori, M. Friction scale effect in drilling natural fiber composites. Tribol. Int. 2018, 119, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, P.K.; Debnath, K.; Singh, I. Hole making in natural fiber-reinforced polylactic acid laminates: An experimental investigation. J. Thermoplast. Compos. Mater. 2017, 30, 30–46. [Google Scholar] [CrossRef]
- Debnath, K.; Singh, I.; Dvivedi, A. Drilling characteristics of sisal fiber-reinforced epoxy and polypropylene composites. Mater. Manuf. Process. 2014, 29, 1401–1409. [Google Scholar] [CrossRef]
- Palanikumar, K.; Valarmathi, T. Experimental investigation and analysis on thrust force in drilling of wood composite medium density fiberboard panels. Exp. Tech. 2016, 40, 391–400. [Google Scholar] [CrossRef]
- Prakash, S.; Mercy, J.L.; Goswami, K. A systemic approach for evaluating surface roughness parameters during drilling of medium density fiberboard using Taguchi method. Indian J. Sci. Technol. 2014, 7, 1888–1894. [Google Scholar]
- Szwajka, K.; Zielińska-Szwajka, J.; Trzepiecinski, T. Experimental study on drilling MDF with tools coated with TiAlN and ZrN. Materials 2019, 12, 386. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.-Y.; Xu, G.; Mai, Y.-W. On the elastic modulus of hybrid particle/short-fiber/polymer composites. Compos. Part B Eng. 2002, 33, 291–299. [Google Scholar] [CrossRef]
- Jayabal, S.; Natarajan, U.; Sekar, U. Regression modeling and optimization of machinability behavior of glass-coir-polyester hybrid composite using factorial design methodology. Int. J. Adv. Manuf. Technol. 2011, 55, 263–273. [Google Scholar] [CrossRef]
- Navaneethakrishnan, S.; Athijayamani, A. Measurement and analysis of thrust force and torque in drilling of sisal fiber polymer composites filled with coconut shell powder. Int. J. Plast. Technol. 2016, 20, 42–56. [Google Scholar] [CrossRef]
- Vinayagamoorthy, R. Parametric optimization studies on drilling of sandwich composites using the Box–Behnken design. Mater. Manuf. Process. 2017, 32, 645–653. [Google Scholar] [CrossRef]
- Khettabi, R.; Songmene, V.; Masounave, J. Effect of tool lead angle and chip formation mode on dust emission in dry cutting. J. Mater. Process. Technol. 2007, 194, 100–109. [Google Scholar] [CrossRef]
- Songmene, V.; Balout, B.; Masounave, J. Clean machining: Experimental investigation on dust formation-part I: Influence of machining parameters and chip formation. Int. J. Environ. Conscious Des. Manuf. 2008, 14, 1–16. [Google Scholar]
- Songmene, V.; Balout, B.; Masounave, J. Clean machining: Experimental investigation on dust formation: Part II: Influence of machining strategies and drill condition. Int. J. Environ. Conscious Des. Manuf. 2008, 14, 17–33. [Google Scholar]
- Djebara, A.; Songmene, V.; Bahloul, A. Effects of machining conditions on specific surface of PM2.5 emitted during metal cutting. Health 2013, 5, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Zaghbani, I.; Songmene, V.; Khettabi, R. Fine and ultrafine particle characterization and modeling in high-speed milling of 6061-T6 aluminum alloy. J. Mater. Eng. Perform. 2009, 18, 38–48. [Google Scholar] [CrossRef]
- Kamguem, R.; Djebara, A.; Songmene, V. Investigation on surface finish and metallic particle emission during machining of aluminum alloys using response surface methodology and desirability functions. Int. J. Adv. Manuf. Technol. 2013, 69, 1283–1298. [Google Scholar] [CrossRef]
- Kouam, J.; Songmene, V.; Djebara, A.; Khettabi, R. Effect of friction testing of metals on particle emission. J. Mater. Eng. Perform. 2012, 21, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Khettabi, R.; Songmene, V.; Masounave, J. Effects of speeds, materials, and tool rake angles on metallic particle emission during orthogonal cutting. J. Mater. Eng. Perform. 2010, 19, 767–775. [Google Scholar] [CrossRef] [Green Version]
- Balout, B.; Songmene, V.; Masounave, J. An experimental study of dust generation during dry drilling of pre-cooled and pre-heated workpiece materials. J. Manuf. Process. 2007, 9, 23–34. [Google Scholar] [CrossRef]
- Kouam, J.; Songmene, V.; Balazinski, M.; Hendrick, P. Effects of minimum quantity lubricating (MQL) conditions on machining of 7075-T6 aluminum alloy. Int. J. Adv. Manuf. Technol. 2015, 79, 1325–1334. [Google Scholar] [CrossRef]
- Khettabi, R.; Songmene, V.; Zaghbani, I.; Masounave, J. Modeling of particle emission during dry orthogonal cutting. J. Mater. Eng. Perform. 2010, 19, 776–789. [Google Scholar] [CrossRef] [Green Version]
- Marani, M.; Songmene, V.; Kouam, J.; Zedan, Y. Experimental investigation on microstructure, mechanical properties and dust emission when milling Al-20Mg 2 Si-2Cu metal matrix composite with modifier elements. Int. J. Adv. Manuf. Technol. 2018, 99, 789–802. [Google Scholar] [CrossRef]
- Songmene, V.; Kouam, J.; Balhoul, A. Effect of minimum quantity lubrication (MQL) on fine and ultrafine particle emission and distribution during polishing of granite. Measurement 2018, 114, 398–408. [Google Scholar] [CrossRef]
- Kremer, A.; El Mansori, M. Influence of nanostructured CVD diamond coatings on dust emission and machinability of SiC particle-reinforced metal matrix composite. Surf. Coat. Technol. 2009, 204, 1051–1055. [Google Scholar] [CrossRef]
- Kremer, A.; El Mansori, M. Tool wear as-modified by particle generation in dry machining. Wear 2011, 271, 2448–2453. [Google Scholar] [CrossRef]
- Haddad, M.; Zitoune, R.; Eyma, F.; Castanie, B. Study of the surface defects and dust generated during trimming of CFRP: Influence of tool geometry, machining parameters and cutting speed range. Compos. Part A Appl. Sci. Manuf. 2014, 66, 142–154. [Google Scholar] [CrossRef]
- Anstey, A.; Vivekanandhan, S.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass. Sci. Total Environ. 2016, 550, 241–247. [Google Scholar] [CrossRef]
- Dhaouadi, T. Caractérisation et Modélisation des Propriétés Mécaniques des Biocomposites à Fibres Courtes Aléatoires; École de Technologie Supérieure: Montreal, QC, Canada, 2018. [Google Scholar]
- Basavarajappa, S.; Venkatesh, A.; Gaitonde, V.; Karnik, S. Experimental investigations on some aspects of machinability in drilling of glass epoxy polymer composites. J. Thermoplast. Compos. Mater. 2012, 25, 363–387. [Google Scholar] [CrossRef]
- Latha, B.; Senthilkumar, V.; Palanikumar, K. Influence of drill geometry on thrust force in drilling GFRP composites. J. Reinf. Plast. Compos. 2011, 30, 463–472. [Google Scholar] [CrossRef]
PP (%wt) | POE (%wt) | MAPP (%wt) | Biochar (%wt) | Miscanthus (%wt) |
---|---|---|---|---|
62 | 5 | 3 | 15 | 15 |
Tensile strength (MPa) | 34 |
Young’s modulus (MPa) | 3175 |
Flexural strength (MPa) | 55 |
Flexural modulus (MPa) | 2717 |
Impact strength (J/m) | 140 |
Factors | Level 1 | Level 2 | Level 3 |
---|---|---|---|
f: Feed rate (mm/rev) | 0.1 | 0.2 | 0.3 |
s: Spindle speed (rpm) | 600 | 1500 | 2400 |
d: Drill bit diameter (mm) | 6 | 8 | 10 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
f: Feed rate (mm/rev) | 9121.5 | 1 | 9121.5 | 104.28 | 0.0000 |
s: Spindle speed (rpm) | 3949.53 | 1 | 3949.53 | 45.15 | 0.0000 |
d: Drill bit diameter (mm) | 2801.01 | 1 | 2801.01 | 32.02 | 0.0000 |
Interaction f.s (mm/min) | 126.945 | 1 | 126.945 | 1.45 | 0.2424 |
Interaction f.d (mm2/rev) | 205.427 | 1 | 205.427 | 2.35 | 0.1411 |
Interaction s.d (rpm*mm) | 1374.52 | 1 | 1374.52 | 15.71 | 0.0008 |
Total error | 1749.41 | 20 | 87.4703 | ||
Total (corr.) | 19328.3 | 26 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
f: Feed rate (mm/rev) | 27,881.8 | 1 | 27,881.8 | 137.47 | 0.0000 |
s: Spindle speed (rpm) | 7015.2 | 1 | 7015.2 | 34.59 | 0.0000 |
d: Drill bit diameter (mm) | 4361.16 | 1 | 4361.16 | 21.50 | 0.0002 |
Interaction f.s (mm/min) | 768.16 | 1 | 768.16 | 3.79 | 0.0658 |
Interaction f.d (mm2/rev) | 388.855 | 1 | 388.855 | 1.92 | 0.1814 |
Interaction s.d (rpm*mm) | 833.333 | 1 | 833.333 | 4.11 | 0.0562 |
Total error | 4056.54 | 20 | 202.827 | ||
Total (corr.) | 45305.1 | 26 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
f: Feed rate (mm/rev) | 0.0418569 | 1 | 0.0418569 | 4.50 | 0.0465 |
s: Spindle speed (rpm) | 0.388962 | 1 | 0.388962 | 41.86 | 0.0000 |
d: Drill bit diameter (mm) | 0.710829 | 1 | 0.710829 | 76.50 | 0.0000 |
Interaction f.s (mm/min) | 0.00213333 | 1 | 0.00213333 | 0.23 | 0.6370 |
Interaction f.d (mm2/rev) | 0.006075 | 1 | 0.006075 | 0.65 | 0.4283 |
Interaction s.d (rpm*mm) | 0.000133333 | 1 | 0.000133333 | 0.01 | 0.9058 |
Total error | 0.185835 | 20 | 0.00929174 | ||
Total (corr.) | 1.33582 | 26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, D.S.; Songmene, V.; Ngo, A.D.; Kouam, J.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Experimental Investigation on Machinability of Polypropylene Reinforced with Miscanthus Fibers and Biochar. Materials 2020, 13, 1181. https://doi.org/10.3390/ma13051181
Tran DS, Songmene V, Ngo AD, Kouam J, Rodriguez-Uribe A, Misra M, Mohanty AK. Experimental Investigation on Machinability of Polypropylene Reinforced with Miscanthus Fibers and Biochar. Materials. 2020; 13(5):1181. https://doi.org/10.3390/ma13051181
Chicago/Turabian StyleTran, Dinh Son, Victor Songmene, Anh Dung Ngo, Jules Kouam, Arturo Rodriguez-Uribe, Manjusri Misra, and Amar Kumar Mohanty. 2020. "Experimental Investigation on Machinability of Polypropylene Reinforced with Miscanthus Fibers and Biochar" Materials 13, no. 5: 1181. https://doi.org/10.3390/ma13051181
APA StyleTran, D. S., Songmene, V., Ngo, A. D., Kouam, J., Rodriguez-Uribe, A., Misra, M., & Mohanty, A. K. (2020). Experimental Investigation on Machinability of Polypropylene Reinforced with Miscanthus Fibers and Biochar. Materials, 13(5), 1181. https://doi.org/10.3390/ma13051181