Investigation on an Absorbing Layer Suitable for a Noise-Reducing Two-Layer Pavement
Abstract
:1. Introduction
1.1. Performance of Noise Absorption through Road Layers
1.2. Performance of Mechanical Behavior of Open-Pore Rubber Modified Asphalt
2. Materials and Methods
2.1. Determination of the Decisive Elastic Modulus Considering the Impact of the Stiff Top Layer
- The elastic modulus of the layer must meet the stiffness requirements of at least 300 MPa: 300 MPa.
- The sound absorption capacity in the frequency range of the tyre–road-noise (TRN) (800 to 1250 Hz) should be as high as possible: .
2.2. Approach and Test Matrix
2.2.1. Impedance Measuring Tube
2.2.2. Uniaxial Loading Tests
2.2.3. Testing of Fatigue Resistance
2.2.4. Testing of Low Temperature Behavior
3. Results and Discussion
3.1. Evaluation of the Suitable Variant
3.2. Asphalt Performance of Var 5
3.2.1. Pressure Swelling Test
3.2.2. Deformation Resistance
3.2.3. Results of the Three Point Bending Test
3.2.4. Results of the Uniaxial Tensions Stress Test and the Thermal Stress Restrained Specimen Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FGSV | Road and Transportation Research Association (Germany) |
Var 5 | Variant 5 |
Var 8 | Variant 8 |
DIN | German institute for standardization (Deutsches Institut für Normung) |
DIN EN | German institute for standardization (European standardization) |
DIN ISO | German institute for standardization (International standardization) |
PERS | Poro-elastic road surface |
UTST | Uniaxial tension stress test |
TRN | Tyre Road Noise |
TSRST | Thermal stress restrained specimen test |
Appendix A
Aggregate | Fraction | Density | Var 5-0 | Var 5-5 | Var 5-7.5 | Var 5-10 | Var 5-20 | Var 5-7.5-T |
---|---|---|---|---|---|---|---|---|
[mm] | [g/cm3] | |||||||
limestone | filler | 2.73 | 4 | 4 | 4 | 4 | 4 | 4 |
basalt | 0–2 | 3.05 | 3 | 3 | 3 | 3 | 3 | 3 |
basalt | 2–5 | 3.09 | 93 | 88 | 85.5 | 83 | 73 | 85.5 |
crumb rubber | super grob | 1.1 | 0.0 | 5 | 7.5 | 10 | 20 | 7.5 |
polyurethane | Elastan | 1.1 | 6 | 6 | 6 | 6 | 6 | 13 |
References
- Schacht, A. Entwicklung Künstlicher Straßendeckschichtsysteme auf Kunststoffbasis zur Geräuschreduzierung mit Numerischen und Empirischen Verfahren. Aachener Mitteilungen Straßenwesen, Erd- und Tunnelbau. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2015. [Google Scholar]
- Schacht, A.; Faßbender, S.; Oeser, M. Development of an acoustically optimized multi-layer surface-system based on synthetics. Int. J. Transp. Sci. Technol. 2018, 7, 217–227. [Google Scholar] [CrossRef]
- Beckenbauer, T. Reifen-Fahrbahngeräusche - Minderungspotenziale der Straßenoberfläche. Fortschritte der Akustik, DAGA, Jahrestagung für Akustik 2003, 29, 20–29. [Google Scholar]
- Beckenbauer, T. Physik der Reifen-Fahrbahn-Geräusche - Geräuschentstehung, Wirkmechanismen und akustische Wirkung unter dem Einfluss von Bautechnik und Straßenbetrieb. In Geräuschmindernde Straßenbeläge in der Praxis - Lärmaktionsplanung; Müller-BBM: Gelsenkirchen, Germany, 2008; Volume 4. [Google Scholar]
- Alber, S. Veränderung des Schallabsorptionsverhaltens von offenporigen Asphalten durch Verschmutzung. Ph.D. Thesis, Institut Für Straßen- Und Verkehrswesen, University of Stuttgart, Stuttgart, Germany, 2013. [Google Scholar]
- Möser, M. Schallabsorption. In Technische Akustik; Springer: Berlin/Heidelberg, Germany, 2012; pp. 177–225. [Google Scholar]
- Sandberg, U.; Ejsmont, J.A. Tyre/road noise sources and generation mechanisms. In Tyre/Road Noise Reference Book; INFORMEX: Harg, Kisa, Sweden, 2002. [Google Scholar]
- Wu, J.P.; Herrington, P.R.; Alabaster, D. Long-term durability of epoxy-modified open-graded porous asphalt wearing course. Int. J. Pavement Eng. 2017, 20, 920–927. [Google Scholar] [CrossRef]
- Gupta, A.; Rodriguez-Hernandez, J.; Castro-Fresno, D. Incorporation of Additives and Fibres in Porous Asphalt Mixtures: A Review. Materials 2019, 12, 3156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Lu, Q.; Qian, Z. Performance evaluation of epoxy modified open-graded porous asphalt concrete. Constr. Build. Mater. 2015, 76, 97–102. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, Y.; Ren, W.; Huang, K. Performance Evaluation of Asphalt Rubber Mixture with Additives. Materials 2019, 12, 1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renken, L. Development of PU-Asphalt - from the Concept to the Practical Implementation. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2019. [Google Scholar]
- Morcillo, M.A.; Hidalgo, M.E.; del Carmen Pastrana, M.; García, D.; Torres, J.; Arroyo, M.B. LIFE SOUNDLESS: New Generation of Eco-Friendly Asphalt with Recycled Materials. Environments 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, U.; Goubert, L.; Biligiri, K.; Kalman, B. State-of-the-Art regarding poroelastic road surfaces (PERSUADE - PoroElastic Road SUrface: An innovation to Avoid Damages to the Environment). In Seventh Framework Programme - Contract No. 226313. 2010. Available online: http://persuade.fehrl.org/ (accessed on 5 January 2020).
- Nillson, N.-A.; Ulmgren, N.; Sandin, A. A quiet poroelastic road surface manufactured in a normal asphalt mixing plant. Acoust. Paris 2008, 123, 3390. [Google Scholar] [CrossRef]
- Sandberg, U.; Ejsmont, J.A. Road surface influence on noise emission. In Tyre/road Noise Reference Book; INFORMEX: Harg, Kisa, Sweden, 2002. [Google Scholar]
- Sandberg, U.; Kalman, B. The Poroelastic Road Surface - Results of an Experiment in Stockholm. In Proceedings of the Forum Acusticum Budapest 2005, 4th European Congress on Acoustics, Budapest, Hungary, 29 August–2 September 2005. [Google Scholar]
- Oeser, M.; Faßbender, S.; Reese, S.; Eggersmann, R.; Gries, T.; Koch, A. INNO-PAVE: Schlussbericht (project report) zum Teilvorhaben: “Grundlagen der konstruktiven Gestaltung, Struktur sowie neuer polymerer Werkstoffe für Straßendeckschichtsysteme” im Verbundprojekt: “Grundlegende Erforschung polymerer Werkstoffe sowie innovativer Herstellungs- und Einbautechnologien für Straßendeckschichtsysteme”, 13XP5001F; RWTH Aachen University: Aachen, Germany, 2019. [Google Scholar]
- Meiarashi, S. Porous Elastic Road Surface as Urban Highway Noise Measure. Transp. Res. Rec. J. Transp. Res. Board 2004, 1880, 151–157. [Google Scholar] [CrossRef]
- Merkblatt für Asphaltdeckschichten aus Offenporigem Asphalt (MOPA); Road and Transportation Research Association (FGSV): Cologne, Germany, 2013; no. 750.
- Merkblatt für Versickerungsfähige Verkehrsflächen (MVV); Road and Transportation Research Association (FGSV): Cologne, Germany, 2013; no. 947.
- DIN EN 10534-2:2001. Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes - Part 2: Transfer-Function Method (ISO 10534-2:1998), German version EN ISO 10534-2:2001; Correction 1 - Nov 2007; Deutsches Institut für Normung: Berlin, Germany, 2007. [Google Scholar]
- Huschek, T. Zum Verformungsverhalten von Asphaltbeton unter Druck. Ph.D. Thesis, Institut für Straßen-, Eisenbahn- und Felsbau, ETH Zürich, Zürich, Switzerland, 1983. [Google Scholar]
- DIN EN 12697-24:08-2012. Bituminous Mixtures - Test Methods - Part 24: Resistance to Fatigue, German version EN 12697-24:2018; Deutsches Institut für Normung: Berlin, Germany, 2012. [Google Scholar]
- Renken, L.; Kreischer, S.; Oeser, M. Entwicklung von Deckschichtmaterialien für versickerungsfähige Verkehrsflächenbefestigungen auf Basis alternativer Bindemittel - Teil II: Ansprache der Performance. Straße Und Autob. 2015, 11, 776–784. [Google Scholar]
- Arbeitspapier Tieftemperaturverhalten von Asphalt - Teil 1: Zug- und Abkühlversuche; Road and Transportation Research Association (FGSV): Cologne, Germany, 2012; no. 725.
- Technische Prüfvorschriften für Asphalt (TP Asphalt-StB 07/13) - Teil 25 B 1 - Einaxialer Druck-Schwellversuch – Bestimmung des Verformungsverhaltens von Walzasphalt bei Wärme, Ausgabe 2018; Road and Transportation Research Association (FGSV): Cologne, Germany, 2018; no. 756.
- Renken, L.; Kreischer, S.; Oeser, M. Entwicklung von Deckschichtmaterialien für versickerungsfähige Verkehrsflächenbefestigungen auf Basis alternativer Bindemittel - Teil I: Festigkeit, Permeabilität, Kornverlust. Straße Und Autob. 2015, 9, 601–608. [Google Scholar]
Crumb Rubber | Max. Grain Size 5 mm | Max. Grain Size 8 mm |
---|---|---|
[% by Volume] | (Var 5) | (Var 8) |
0 | Var 5-0 | Var 8-0 |
2.5 | - | Var 8-2.5 |
5 | Var 5-5 | Var 8-5 |
7.5 | Var 5-7.5 | Var 8-7.5 |
10 | Var 5-10 | Var 8-10 |
12.5 | - | Var 8-12.5 |
20 | Var 5-20 | Var 8-20 |
Performance Test | Shape | Diameter/Width × Depth | Height |
---|---|---|---|
pressure-swelling test | cylinder | mm | mm |
three-point bending test | prism | mm | mm |
uniaxial tension stress test and | |||
thermal stress restrained specimen test | prism | mm | mm |
Variant | |||
---|---|---|---|
Var 5-7.5 | 537 | not reached | 386 |
PU-Var. A | 2277 | 831 | 577 |
PU-Var. B | 3322 | 4201 | 727 |
Variant | Var 5-7.5 | Var 5-7.5-T | PU-Var. A | SMA 11 S | |
---|---|---|---|---|---|
T | [C] | 20 | −25 | −9.9 | −6.5 |
[MPa] | 0.618 | 2.261 | 3.248 | 3.397 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faßbender, S.; Oeser, M. Investigation on an Absorbing Layer Suitable for a Noise-Reducing Two-Layer Pavement. Materials 2020, 13, 1235. https://doi.org/10.3390/ma13051235
Faßbender S, Oeser M. Investigation on an Absorbing Layer Suitable for a Noise-Reducing Two-Layer Pavement. Materials. 2020; 13(5):1235. https://doi.org/10.3390/ma13051235
Chicago/Turabian StyleFaßbender, Sabine, and Markus Oeser. 2020. "Investigation on an Absorbing Layer Suitable for a Noise-Reducing Two-Layer Pavement" Materials 13, no. 5: 1235. https://doi.org/10.3390/ma13051235
APA StyleFaßbender, S., & Oeser, M. (2020). Investigation on an Absorbing Layer Suitable for a Noise-Reducing Two-Layer Pavement. Materials, 13(5), 1235. https://doi.org/10.3390/ma13051235