With PBDB-T as the Donor, the PCE of Non-Fullerene Organic Solar Cells Based on Small Molecule INTIC Increased by 52.4%
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication and Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Li, Z.C.; Zhao, S.L.; Xu, Z.; Swelm, W.; Song, D.D.; Qiao, B.; Zhao, J.; Liu, J.L.; Yuan, B.B.; Xu, X.Y. Improving charge transport by the ultrathin QDs interlayer in polymer solar cells. RSC Adv. 2018, 8, 17914–17920. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Yang, L.; Song, D.; Zhao, J.; Li, Z.; Xu, Z.; Zhang, W.; Huang, Y.; Zhao, S. A novel alcohol-soluble squaraine dye as an interfacial layer for efficient polymer solar cells. Org. Electron. 2019, 69, 241–247. [Google Scholar] [CrossRef]
- Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A.K.Y.; Marder, S.R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 1–19. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515. [Google Scholar] [CrossRef]
- Liu, G.; Jia, J.; Zhang, K.; Jia, X.E.; Yin, Q.; Zhong, W.; Li, L.; Huang, F.; Cao, Y. 15% Efficiency Tandem Organic Solar Cell Based on a Novel Highly Efficient Wide-Bandgap Nonfullerene Acceptor with Low Energy Loss. Adv. Energy Mater. 2019, 9, 1803657. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, J.; Zhao, J.; Li, Y.; Qiao, B.; Song, D.; Huang, Y.; Xu, Z.; Zhao, S.; Xu, X. Improving the Charge Carrier Transport and Suppressing Recombination of Soluble Squaraine-Based Solar Cells via Parallel-Like Structure. Materials 2018, 11, 759. [Google Scholar] [CrossRef] [Green Version]
- Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; et al. Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 4929–4934. [Google Scholar] [CrossRef]
- Huang, D.; Li, Y.; Xu, Z.; Zhao, S.; Zhao, L.; Zhao, J. Enhanced performance and morphological evolution of PTB7:PC71BM polymer solar cells by using solvent mixtures with different additives. Phys. Chem. Chem. Phys. 2015, 17, 8053–8060. [Google Scholar] [CrossRef]
- Chen, J.; Pan, F.; Cao, Y.; Chen, J. Low boiling point solvent additives enable vacuum drying-free processed 230 nm thick PTB7-Th:PC71BM active layers with more than 10% power conversion efficiency. J. Mater. Chem. A 2019, 7, 1861–1869. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Q. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). J. Mater. Chem. C 2017, 5, 1275–1302. [Google Scholar] [CrossRef]
- He, Y.; Li, Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 2011, 13, 1970–1983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tan, H.S.; Guo, X.; Facchetti, A.; Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 2018, 3, 720–731. [Google Scholar] [CrossRef]
- Fu, H.; Wang, Z.; Sun, Y. Polymer Donors for High-Performance Non-Fullerene Organic Solar Cells. Angew. Chem. Int. Ed. Engl. 2019, 58, 4442–4453. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Zhan, X. Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 2016, 45, 2544–2582. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, A.; Moser, M.; Marks, A.; Little, M.S.; Gasparini, N.; Brabec, C.J.; Baran, D.; McCulloch, I. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 2019, 48, 1596–1625. [Google Scholar] [CrossRef]
- Hou, J.; Inganas, O.; Friend, R.H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128. [Google Scholar] [CrossRef]
- Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem. 2019, 62, 746–752. [Google Scholar] [CrossRef]
- Xie, D.; Liu, T.; Lee, T.H.; Gao, W.; Zhong, C.; Huo, L.; Luo, Z.; Wu, K.; Xiong, W.; Kim, J.Y.; et al. A new small molecule acceptor based on indaceno 2,1-b:6,5-b’ dithiophene and thiophene-fused ending group for fullerene-free organic solar cells. Dye. Pigment. 2018, 148, 263–269. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, M.; Yan, Y.; Xin, J.; Wang, T.; Ma, W.; Tang, C.; Zheng, Q. Ladder-Type Dithienonaphthalene-Based Small-Molecule Acceptors for Efficient Nonfullerene Organic Solar Cells. Chem. Mater. 2017, 29, 7942–7952. [Google Scholar] [CrossRef]
- Yao, Z.; Liao, X.; Gao, K.; Lin, F.; Xu, X.; Shi, X.; Zuo, L.; Liu, F.; Chen, Y.; Jen, A.K.Y. Dithienopicenocarbazole-Based Acceptors for Efficient Organic Solar Cells with Optoelectronic Response Over 1000 nm and an Extremely Low Energy Loss. J. Am. Chem. Soc. 2018, 140, 2054–2057. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Yang, S.F.; Yang, Z.; Yang, J.L.; Yip, H.L.; Zhang, F.J.; He, F.; Wang, T.; Wang, J.Z.; Yuan, Y.B.; et al. Carbon-Oxygen-Bridged Ladder-Type Building Blocks for Highly Efficient Nonfullerene Acceptors. Adv. Mater. 2019, 31, 1804790. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhang, W.; Wu, J.; Pang, Z.; Zhao, S.; Lu, Z.; Huang, Y. An easily available near-infrared absorbing non-fullerene photovoltaic electron acceptor with indeno[1,2-b]indole as the central core. Dye. Pigment. 2019, 166, 467–472. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, R.; Wang, Z.; Guo, F.; Wei, Z.; Yang, Y.; Zhao, L.; Zhang, Y. An Asymmetrical Polymer Based on Thieno[2,3-f]benzofuran for Efficient Fullerene-Free Polymer Solar Cells. ACS Appl. Energy Mater. 2018, 1, 1888–1892. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Wang, J.; Zhang, Z.-G.; Li, Y.; Liu, Y.; Zhu, T.; Bao, X.; Sun, M.; Yang, R. Crystalline Medium-Bandgap Light-Harvesting Donor Material Based on β-Naphthalene Asymmetric-Modified Benzodithiophene Moiety toward Efficient Polymer Solar Cells. Chem. Mater. 2017, 29, 8249–8257. [Google Scholar] [CrossRef]
- Maurano, A.; Hamilton, R.; Shuttle, C.G.; Ballantyne, A.M.; Nelson, J.; O’Regan, B.; Zhang, W.; McCulloch, I.; Azimi, H.; Morana, M.; et al. Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: A comparison of four different donor polymers. Adv. Mater. 2010, 22, 4987–4992. [Google Scholar] [CrossRef] [Green Version]
- Derouiche, H.; Djara, V. Impact of the energy difference in LUMO and HOMO of the bulk heterojunctions components on the efficiency of organic solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 1163–1167. [Google Scholar] [CrossRef]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nature Energy 2016, 1, 1–7. [Google Scholar] [CrossRef]
- Lu, L.; Xu, T.; Chen, W.; Landry, E.S.; Yu, L. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 2014, 8, 716–722. [Google Scholar] [CrossRef]
- Benten, H.; Nishida, T.; Mori, D.; Xu, H.; Ohkita, H.; Ito, S. High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths. Energy Environ. Sci. 2016, 9, 135–140. [Google Scholar] [CrossRef] [Green Version]
D:A | VOC (V) | JSC (mA/cm2) | FF (%) | PCE (%) | Rs (Ω/cm2) | Rsh (Ω/cm2) |
---|---|---|---|---|---|---|
PBDB-T:INTIC | 0.847 | 18.995 | 66.245 | 10.655 | 139.132 | 15863.343 |
PBDB-T-2F:INTIC | 0.926 | 12.184 | 60.346 | 6.811 | 176.240 | 10190.458 |
PTB7-Th:INTIC | 0.811 | 13.954 | 57.534 | 6.528 | 181.171 | 8461.614 |
PTB7:INTIC | 0.801 | 11.409 | 57.561 | 5.260 | 231.350 | 9103.349 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, Z.; Zhao, S.; Xu, Z.; Qiao, B.; Song, D.; Wageh, S.; Al-Ghamdi, A. With PBDB-T as the Donor, the PCE of Non-Fullerene Organic Solar Cells Based on Small Molecule INTIC Increased by 52.4%. Materials 2020, 13, 1324. https://doi.org/10.3390/ma13061324
Zhang W, Li Z, Zhao S, Xu Z, Qiao B, Song D, Wageh S, Al-Ghamdi A. With PBDB-T as the Donor, the PCE of Non-Fullerene Organic Solar Cells Based on Small Molecule INTIC Increased by 52.4%. Materials. 2020; 13(6):1324. https://doi.org/10.3390/ma13061324
Chicago/Turabian StyleZhang, Weifang, Zicha Li, Suling Zhao, Zheng Xu, Bo Qiao, Dandan Song, S. Wageh, and Ahmed Al-Ghamdi. 2020. "With PBDB-T as the Donor, the PCE of Non-Fullerene Organic Solar Cells Based on Small Molecule INTIC Increased by 52.4%" Materials 13, no. 6: 1324. https://doi.org/10.3390/ma13061324
APA StyleZhang, W., Li, Z., Zhao, S., Xu, Z., Qiao, B., Song, D., Wageh, S., & Al-Ghamdi, A. (2020). With PBDB-T as the Donor, the PCE of Non-Fullerene Organic Solar Cells Based on Small Molecule INTIC Increased by 52.4%. Materials, 13(6), 1324. https://doi.org/10.3390/ma13061324