Citrate and Polyvinylpyrrolidone Stabilized Silver Nanoparticles as Selective Colorimetric Sensor for Aluminum (III) Ions in Real Water Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Apparatus
2.3. Silver Nanoparticles Synthesis
2.3.1. Synthesis of PVP-AgNPs
2.3.2. Synthesis of NaBH4-AgNPs
2.3.3. Synthesis of Citrate-AgNPs
2.3.4. Synthesis of Citrate+PVP-AgNPs
3. Results and Discussion
3.1. AgNPs Characterization
3.2. Interaction of AgNPs with Metal Ions
3.2.1. Effect of Medium pH
3.2.2. Influence of Aluminum Concentration
3.3. Deconvolution of Spectra Citrate+PVP-AgNPs:Al
3.4. Analytical Study of the Citrate+PVP-AgNPs:Al Interaction
3.5. Real Water Samples Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baylor, W.; Egan, W.; Richman, P. Aluminum salts in vaccines-US perspective. Vaccine 2002, 20, S18–S23. [Google Scholar] [CrossRef]
- Soni, M.G.; White, S.M.; Flamm, W.G.; Burdock, G.A. Safety evaluation of dietary aluminum. Regul. Toxicol. Pharm. 2001, 33, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, H.; Kim, S.; Noh, J.Y.; Song, E.J.; Kim, C.; Kim, J. Fluorescent dye containing phenol-pyridyl for selective detection of aluminum ions. Dye. Pigment. 2013, 96, 590–594. [Google Scholar] [CrossRef]
- Liu, X.; Wu, F.; Ma, L. Colorimetric assay for Al3+ based on alizarin red S-functionalized silver nanoparticles. Aust. J. Chem. 2014, 67, 1700–1705. [Google Scholar] [CrossRef]
- Banks, W.A.; Kastin, A.J. Aluminum-induced neurotoxicity: Alterations in membrane function at the blood-brain barrier. Neurosci. Biobehav. Rev. 1989, 13, 47–53. [Google Scholar] [CrossRef]
- Good, P.F.; Olanow, C.W.; Perl, D.P. Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in parkinson’s disease: A LAMMA study. Brain Res. 1992, 593, 343–346. [Google Scholar] [CrossRef]
- Paik, S.R.; Lee, J.H.; Kim, D.H.; Chang, C.S.; Kim, J. Aluminum-induced structural alterations of the precursor of the non-Aβ component of alzheimer’s disease amyloid. Arch. Biochem. Biophys. 1997, 344, 325–334. [Google Scholar] [CrossRef]
- Lin, J.L.; Kou, M.T.; Leu, M.L. Effect of long-term low-dose aluminum-containing agents on hemoglobin synthesis in patients with chronic renal insufficiency. Nephron 1996, 74, 33–38. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Aluminium; US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 1992.
- WHO. Health criteria and other supporting information. In Guidelines for Drinking-Water Quality, 2nd ed.; World Health Organization: Geneva, Switzerland, 1998; Volume 2. [Google Scholar]
- Kaur, A.; Raj, T.; Kaur, S.; Kaur, N. Nano molar detection of Al3+ in aqueous medium and acidic soil using chromone based fluorescent organic nanoparticles (FONPs). Anal. Methods 2014, 6, 8752–8759. [Google Scholar] [CrossRef]
- Gupta, V.K.; Singh, A.K.; Kumawat, L.K. Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sens. Actuators B 2014, 195, 98–108. [Google Scholar] [CrossRef]
- Deschaume, O.; Fournier, A.; Shafranab, K.L.; Perry, C.C. Interactions of aluminium hydrolytic species with biomolecules. New J. Chem. 2008, 32, 1346–1356. [Google Scholar] [CrossRef]
- Gupta, V.K.; Goyal, R.N.; Jain, A.K.; Sharma, R.A. Aluminium (III)-selective PVC membrane sensor based on a schiff base complex of N,N’-bis (salicylidene)-1,2-cyclohexanediamine. Electrochim. Acta 2009, 54, 3218–3224. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Rezvaninia, Z.; Sabzyan, H.; Boeini, H.Z. Characterization of gold-thiol-8-hydroxyquinoline self-assembled monolayers for selective recognition of aluminum ion using voltammetry and electrochemical impedance spectroscopy. Anal. Chim. Acta 2014, 825, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Satiroglu, N.; Tokgoz, I. Cloud point extraction of aluminum (III) in water samples and determination by electrothermal atomic absorption spectrometry, flame atomic absorption spectrometry and UV-visible spectrophotometry. Int. J. Environ. Anal. Chem. 2010, 90, 560–572. [Google Scholar] [CrossRef]
- Nagaoka, M.H.; Maitani, T. Speciation of Aluminium in Human Serum Investigated by HPLC/High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS): Effects of Sialic Acid Residues of the Carbohydrate Chain on the Binding Affinity of Aluminium for Transferrin. J. Health Sci. 2009, 55, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Fang, Y.M.; Xiao, Q.; Li, J.; Li, S.B.; Chen, H.J.; Sun, J.J.; Yang, H.H. Rapid visual detection of aluminium ion using citrate capped gold nanoparticle. Analyst 2012, 137, 2021–2023. [Google Scholar] [CrossRef]
- Gupta, V.K.; Singh, A.K.; Ganjali, M.R.; Norouzi, P.; Faridbod, F.; Mergu, N. Comparative study of colorimetric sensors based on newly synthesized schiff bases. Sens. Actuators B Chem. 2013, 182, 642–651. [Google Scholar] [CrossRef]
- Sung, H.K.; Oh, S.Y.; Park, C.; Kim, Y. Colorimetric detection of Co2+ ion using silver nanoparticles with spherical, plate, and rod shapes. Langmuir 2013, 29, 8978–8982. [Google Scholar] [CrossRef]
- Shang, Y.; Wu, F.; Qi, L. Highly selective colorimetric assay for nickel ion using N-acetyl-L-cysteine-functionalized silver nanoparticles. J. Nanopart. Res. 2012, 14, 1169. [Google Scholar] [CrossRef]
- Bothra, S.; Solanki, J.N.; Sahoo, S.K. Functionalized silver nanoparticles as chemosensor for pH, Hg2+ and Fe3+ in aqueous medium. Sens. Actuators B 2013, 188, 937–943. [Google Scholar] [CrossRef]
- Kumar, V.V.; Anbarasan, S.; Christena, L.R.; SaiSubramanian, N.; Anthony, S.P. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 129, 35–42. [Google Scholar] [CrossRef]
- Gao, Y.X.; Xin, J.W.; Shen, Z.Y.; Pan, W.; Li, X.; Wu, A.G. A new rapid colorimetric detection method of Mn2+ based on tripolyphospfate modified silver nanoparticles. Sens. Actuators B 2013, 181, 288–293. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Y.; Li, X.; Zhou, T.; Ma, H.; Qiang, H.; Liu, Y. Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles. Anal. Chim. Acta 2013, 787, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Amanulla, B.; Perumal, K.N.; Ramaraj, S.K. Chitosan functionalized gold nanoparticles assembled on sulphur doped graphitic carbón nitride as a new platform for colorimetric detection of trace Hg2+. Sens. Actuators B Chem. 2019, 281, 281–287. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, I.; Sung, Y.; Wu, S. Colorimetric detection of Al3+ using triazole-ether functionalized gold nanoparticles. Talanta 2013, 117, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, L.; Dash, K.; Ballal, A. Selective colorimetric/visual detection of Al3+ in ground water using ascorbic acid capped gold nanoparticles. Sens. Actuators B Chem. 2017, 248, 124–132. [Google Scholar] [CrossRef]
- Yang, N.; Gao, Y.; Zhang, Y.; Shen, Z.; Wu, A. A new rapid colorimetric detection method of Al3+ with high sensitivity and excellent selectivity based on new mechanism of aggregation of smaller etched silver nanoparticles. Talanta 2014, 22, 272–277. [Google Scholar] [CrossRef]
- Liu, X.; Shao, C.; Chen, T.; He, Z.; Du, G. Stable silver nanoclusters with aggregation-induced emission enhancement for detection of aluminum ion. Sens. Actuators B Chem. 2019, 278, 181–189. [Google Scholar] [CrossRef]
- Perinot, A.; Kshirsagar, P.; Malvindi, M.A.; Pompa, P.P.; Fiammengo, R.; Caironi, M. Direct-written polymer field-effect transistors operating at 20 MHz. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kshirsagar, P.; Sangaru, S.S.; Brunetti, V.; Malvindi, M.A.; Pompa, P.P. Synthesis of fluorescent metal nanoparticles in aqueous solution by photochemical reduction. Nanotechnology 2014, 25, 1–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H. Controllable synthesis of silver nanoparticles in hyperbranched macromolecule templates for printed flexible electronics. RSC Adv. 2015, 5, 17931–17937. [Google Scholar] [CrossRef]
- Prado-Gotor, R.; López-Pérez, G.; Martín, M.J.; Cabrera-Escribano, F.; Franconetti, A. Use of gold nanoparticles as crosslink agent to form chitosan nanocapsules: Study of the direct interaction in aqueous solutions. J. Inorg. Bichem. 2014, 135, 77–85. [Google Scholar] [CrossRef] [PubMed]
- López-Pérez, G.; Prado-Gotor, R.; Fuentes-Rojas, J.A.; Martin-Valero, M.J. Understanding gold nanoparticles interactions with chitosan: Crosslinking agents as novel strategy for direct covalent immobilization of biomolecules on metallic surfaces. J. Mol. Liq. 2020, 302, 112381. [Google Scholar] [CrossRef]
- Wang, H.S.; Qiao, X.L.; Chen, J.G.; Wang, X.J.; Ding, S.Y. Mechanism of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 2005, 94, 449–453. [Google Scholar] [CrossRef]
- Van Dong, P.; Ha, C.H.; Binh, L.T.; Kasbohm, J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int. Nano Lett. 2012, 1, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Zhong, C.; Mu, R. The study of deposited silver particulate films by simple method for efficient SERS. Chem. Phys. Lett. 2005, 401, 271–275. [Google Scholar] [CrossRef]
- Molero-Casado, M.; González-Arjona, D.; Calvente-Pacheco, J.J.; López-Pérez, G. Activity Coefficients of Al(ClO4)3 in Aqueous Solutions: A Reexamination. J. Electroanal. Chem. 1999, 460, 100–104. [Google Scholar] [CrossRef]
- Sevilla, J.M.; Dominguez, M.; García-Blanco, F.; Blázquez, M. Reolution of absorption spectra. Comput. Chem. 1989, 13, 197–300. [Google Scholar] [CrossRef]
- González-Arjona, D. DECOUVIS; Dpto. de Química Física, Universidad de Sevilla: Sevilla, Spain, 1995. [Google Scholar]
- Cuadros, L.; García, A.M.; Bosque, J.M. Statistical estimation of linear calibration range. Anal. Lett. 1996, 29, 1231–1239. [Google Scholar] [CrossRef]
- Compañó, I.; Beltrán, R.; Ríos Castro, A. Garantía de Calidad en los Laboratorios Analíticos; Síntesis: Madrid, Spain, 2002. [Google Scholar]
- AOAC Official Methods Program Manual, Part 6: Guidelines for Collaborative Study. 2013. Available online: http://www.aoac.org/ (accessed on 11 February 2020).
- Zhou, T.; Lin, L.; Rong, M.; Jiang, Y.; Chen, X. Silver-gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal. Chem. 2013, 85, 9839–9844. [Google Scholar] [CrossRef]
- Huang, P.; Li, J.; Liu, X.; Wu, F. Colorimetric determination of aluminum (III) based on the aggregation of Schiff base-functionalized gold nanoparticles. Microchim. Acta 2016, 183, 863–869. [Google Scholar] [CrossRef]
- Shinde, S.; Kim, D.-Y.; Saratale, R.G.; Syed, A.; Ameen, F.; Ghodake, G. A spectral probe for detection of aluminum (III) ions using Surface functionalized gold nanoparticles. Nanomaterials 2017, 7, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, Y.; Gao, D.; Wu, F.; Wan, X. Silver nanoparticles capped with 8-hydroxyquinoline-5-sulfonate for the determination of trace aluminum in water samples and for intracellular fluorescence imaging. Microchim. Acta 2013, 180, 1317–1324. [Google Scholar] [CrossRef]
Silver Nanoparticle | Shape | Medium Size (nm) | λmax (nm) |
---|---|---|---|
PVP-AgNPs | spherical | 10–20 | 424 |
NaBH4-AgNPs | spherical | 2–4 | 392 |
Citrate-AgNPs | spherical | 12–26 30–60 | 424 |
Citrate+PVP-AgNPs | spherical | 10–20 25–45 | 397 |
Al(III) (μM) in Mixtures | B2 | B3 | |||
---|---|---|---|---|---|
Amax (U.A.) | wv (kK) | Amax (U.A.) | wv (kK) | ||
1 | 0.670 | 3.0 | 0.150 | 4.0 | 0.22 |
0.5 | 0.690 | 2.7 | 0.140 | 3.9 | 0.20 |
0.1 | 0.700 | 2.7 | 0.135 | 3.9 | 0.19 |
5 × 10−2 | 0.740 | 2.7 | 0.125 | 3.9 | 0.17 |
1 × 10−2 | 0.753 | 2.7 | 0.120 | 3.9 | 0.16 |
5 × 10−3 | 0.760 | 2.7 | 0.110 | 3.9 | 0.14 |
1 × 10−3 | 0.765 | 2.9 | 0.105 | 4.0 | 0.13 |
5 × 10−4 | 0.770 | 2.9 | 0.095 | 4.4 | 0.12 |
1 × 10−4 | 0.775 | 3.1 | 0.090 | 4.4 | 0.11 |
Probe | 102 LOD (μM) | 102 LOQ (μM) | Reference |
---|---|---|---|
Citrate+PVP-AgNPs | 4.05 | 13.5 | This work |
Alizarin red S-AgNPs | 12 | 40.0 | [4] |
Silver-gold alloy nanoclusters | 80 | 266.4 | [45] |
Silver nanoclusters | 10 | 33.3 | [30] |
Schiff base-functionalized AuNPs | 29 | 96.6 | [46] |
Surface functionalized AuNPs | 6.7 | 22.3 | [47] |
8-hydroxyquinoline-5-sulfonate-AgNPs | 0.2 | 0.666 | [48] |
Sample | Al(III) Added (μM) | Al(III) Observed (μM) * Citrate+PVP-AgNPs | Recovery (%) | Al(III) Observed (μM) * ICP-MS |
---|---|---|---|---|
Tap water | 0 | 0.23 ± 0.05 | - | 0.22 ± 0.03 |
0.5 | 0.82 ± 0.04 | 112 | 0.79 ± 0.02 | |
1 | 1.3 ± 0.1 | 106 | 1.4 ± 0.2 | |
Pond water | 0 | 0.4 ± 0.1 | - | 0.3 ± 0.2 |
0.5 | 1.02 ± 0.08 | 113 | 1.06 ± 0.06 | |
1 | 1.6 ± 0.2 | 107 | 1.4 ± 0.3 | |
River water | 0 | 0.56 ± 0.08 | - | 0.60 ± 0.03 |
0.5 | 1.05 ± 0.05 | 99 | 1.02 ± 0.06 | |
1 | 1.5 ± 0.1 | 96 | 1.7 ± 0.1 | |
Mineral water | 0 | 0.16 ± 0.07 | - | 0.14 ± 0.04 |
0.5 | 0.8 ± 0.2 | 106 | 0.7 ± 0.2 | |
1 | 0.14 ± 0.03 | 98 | 0.16 ± 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruíz del Portal-Vázquez, P.; López-Pérez, G.; Prado-Gotor, R.; Román-Hidalgo, C.; Martín-Valero, M.J. Citrate and Polyvinylpyrrolidone Stabilized Silver Nanoparticles as Selective Colorimetric Sensor for Aluminum (III) Ions in Real Water Samples. Materials 2020, 13, 1373. https://doi.org/10.3390/ma13061373
Ruíz del Portal-Vázquez P, López-Pérez G, Prado-Gotor R, Román-Hidalgo C, Martín-Valero MJ. Citrate and Polyvinylpyrrolidone Stabilized Silver Nanoparticles as Selective Colorimetric Sensor for Aluminum (III) Ions in Real Water Samples. Materials. 2020; 13(6):1373. https://doi.org/10.3390/ma13061373
Chicago/Turabian StyleRuíz del Portal-Vázquez, Paula, Germán López-Pérez, Rafael Prado-Gotor, Cristina Román-Hidalgo, and María Jesús Martín-Valero. 2020. "Citrate and Polyvinylpyrrolidone Stabilized Silver Nanoparticles as Selective Colorimetric Sensor for Aluminum (III) Ions in Real Water Samples" Materials 13, no. 6: 1373. https://doi.org/10.3390/ma13061373
APA StyleRuíz del Portal-Vázquez, P., López-Pérez, G., Prado-Gotor, R., Román-Hidalgo, C., & Martín-Valero, M. J. (2020). Citrate and Polyvinylpyrrolidone Stabilized Silver Nanoparticles as Selective Colorimetric Sensor for Aluminum (III) Ions in Real Water Samples. Materials, 13(6), 1373. https://doi.org/10.3390/ma13061373