Assessment of the Mechanical Parameters of Resin Composites with the Addition of Various Types of Fibres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Binder
2.1.2. Aggregate
2.1.3. Fibres
2.2. Sample Preparation
2.3. Methods
2.3.1. Bending Flexural Strength Test
2.3.2. Compressive Strength Test
2.3.3. Brittle Fracture Toughness
2.3.4. Scanning Electron Microscopy (SEM)
3. Results and Discussion
- check whether each factor considered independently has a significant impact on the values of flexural and compressive strength,
- determine the main contribution of each factor to global variance.
3.1. Flexural Strength
3.1.1. Statistical Analysis of Test Results Related to the First Factor (Type of Fibre)
3.1.2. Statistical Analysis of Test Results Related to the 2nd Factor (Fibre Content)
3.2. Compressive Strength Test
3.2.1. Statistical Analysis of Test Results Related to the First Factor (Type of Fibre)
3.2.2. Statistical Analysis of Test Results Related to the 2nd Factor (Fibre Content)
3.3. Brittle Fracture Toughness
3.4. Scanning Electron Microscopy (SEM)
4. Conclusions
- Addition of each of the three types of fibre in an amount of up to 4% wt. allows the obtaining of mortars with higher flexural and compressive strength compared to control mortars. The highest values of flexural strength (25.68 MPa) were obtained at 2% substitution of sand with polypropylene fibres. The most favourable compressive strength, equal to 100.98 MPa, was also noted for mortars with polypropylene fibres (addition at the level of 4%).
- Replacing sand 2% by weight with one of three types of fibres, respectively, increases the stress intensity factors and, compared to the control mortars, improves crack resistance.
- Analysing the graphs depicting the force-displacement relationship, it can be observed that at the time of breaking, cracking in mortars reinforced with polypropylene fibres spreads faster than with mortars containing glass and carbon fibres. The SEM analysis confirmed that in the matrix of epoxy resin with polypropylene fibre, it is possible to observe non-dispersed fibres oriented towards the crack. With the accumulation and orientation of the fibres, a fragile region appears, where the crack propagation occurs.
- Based on the obtained research results, and also due to availability and price, the most favourable seems to be the production of composites containing the addition of polypropylene fibres.
Author Contributions
Funding
Conflicts of Interest
References
- Ribeiro, M.C.S.; Meixedo, J.P.; Fiúza, A.; Dinis, M.L.; Meira Castro, A.C.; Silva, F.J.G.; Costa, C.; Ferreira, F.; Alvim, M.R. Mechanical Behaviour Analysis of Polyester Polymer Mortars Modified with Recycled GFRP Waste Materials. World Acad. Sci. Eng. Technol. 2011, 5, 1280–1286. [Google Scholar]
- Al-Maadeed, M.A.; Labidi, S. Recycled polymers in natural fibre-reinforced polymer composites, Natural Fibre Composites. Mater. Process Appl. 2014, 103–114. [Google Scholar] [CrossRef]
- Dębska, B.; Dębska, B.J.; Lichołai, L. Evaluation of the Utility of Using Classification Algorithms when Designing New Polymer Composites. J. Ecol. Eng. 2019, 20, 212–225. [Google Scholar] [CrossRef]
- Czarnecki, L. Polymer concrete. Cem. Lime Concr. 2010, 2, 63–85. [Google Scholar]
- Dębska, B.; Lichołai, L.; Krasoń, J. Selected properties of epoxy mortars with perlite aggregate. J. Ecol. Eng. 2017, 18, 246–255. [Google Scholar] [CrossRef]
- Dębska, B. The use of discriminant analysis methods for diagnosis of the causes of differences in the properties of resin mortar containing various fillers. In E3S Web Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 49, p. 00017. [Google Scholar] [CrossRef]
- Dębska, B.; Lichołai, L.; Miąsik, P. Assessment of the Applicability of Sustainable Epoxy Composites Containing Waste Rubber Aggregates in Buildings. Buildings 2019, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Correia, L.; Partala, T.; Loch, F.C.; Segadães, A.M. Factorial design used to model the compressive strength of mortars containing recycled rubber. Compos. Struct. 2010, 92, 2047–2051. [Google Scholar] [CrossRef]
- Dębska, B.; Lichołai, L. Long-Term Chemical Resistance of Ecological Epoxy Polymer Composites. J. Ecol. Eng. 2018, 19, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Tavares, C.M.L.; Ribeiro, M.C.S.; Ferreira, A.J.M.; Guedes, R.M. Creep behaviour of FRP-reinforced polymer concrete. Compos. Struct. 2002, 57, 47–51. [Google Scholar] [CrossRef]
- Ribeiro, M.C.S.; Nóvoa, P.R.; Ferreira, A.J.M.; Marques, A.T. Flexural performance of polyester and epoxy polymer mortars under severe thermal conditions. Cem. Concr. Compos. 2004, 26, 803–809. [Google Scholar] [CrossRef]
- Nunes, L.C.S.; Reis, J.M.L.; Mattos, H.S.C. Parameters identification of polymer concrete using a fracture mechanics test method and full-field measurements. Eng. Fract. Mech. 2011, 78, 2957–2965. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Y.; Li, J.; Wang, H.; Zhang, L. Adhesion and erosion properties of epoxy resin composite coatings reinforced with fly ash cenospheres and short glass fibers. Prog. Org. Coat. 2018, 125, 489–499. [Google Scholar] [CrossRef]
- Nunes, L.C.S.; Reis, J.M.L. Estimation of crack-tip-opening displacement and crack extension of glass fiber reinforced polymer mortars using digital image correlation method. Mater. Des. 2012, 33, 248–253. [Google Scholar] [CrossRef]
- Reis, J.M.L.; Menezes, E.M. Barley residue reinforced polymer mortars: Fracture mechanics approach. Compos. Struct. 2017, 173, 53–57. [Google Scholar] [CrossRef]
- Moreira, G.C.; Reis, J.M.L.; Rohan, U.; Soares, C.A.P.; da Costa Mattos, H.S. Effect of fiber reinforcement on mixed-mode fracture of polymer mortars. Compos. Struct. 2016, 141, 179–183. [Google Scholar] [CrossRef]
- Alshammari, B.A.; Saba, N.; Alotaibi, M.D.; Alotibi, M.F.; Jawaid, M.; Alothman, O.Y. Evaluation of Mechanical, Physical, and Morphological Properties of Epoxy Composites Reinforced with Different Date Palm Fillers. Materials 2019, 12, 2145. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.M.L.; Motta, E.P. Mechanical behavior of piassava fiber reinforced castor oil polymer mortars. Compos. Struct. 2014, 111, 468–472. [Google Scholar] [CrossRef]
- Meira Castro, A.C.; Ribeiro, M.C.S.; Santos, J.; Meixedo, J.P.; Silva, F.J.G.; Fiúza, A.; Dinis, M.L.; Alvim, M.R. Sustainable waste recycling solution for the glass fibre reinforced polymer composite materials industry. Constr. Build. Mater. 2013, 45, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Kang, X.; Jin, Y.; Cai, J. The Effect of Mechanical Performance on PP Fiber to Polymer Mortar. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 128, p. 012038. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.M.L. Sisal fiber polymer mortar composites: Introductory fracture mechanics approach. Constr. Build. Mater. 2012, 37, 177–180. [Google Scholar] [CrossRef]
- Reis, J.M.L.; Ferreira, A.J.M. Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fibers. Constr. Build. Mater. 2004, 18, 523–528. [Google Scholar] [CrossRef]
- Reis, J.M.L.; Chianelli-Junior, R.; Cardoso, J.L.; Marinho, F.J.V. Effect of recycled PET in the fracture mechanics of polymer mortar. Constr. Build. Mater. 2011, 25, 2799–2804. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.M.L. Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Constr. Build. Mater. 2006, 20, 673–678. [Google Scholar] [CrossRef]
- Reis, J.M.L.; Carneiro, E.P. Effect of piassava lees in the fracture behavior of polymer mortars. Compos. Struct. 2013, 95, 564–568. [Google Scholar] [CrossRef]
- Reis, J.M.L.; Moreira, D.C.; Nunes, L.C.S.; Sphaier, L.A. Evaluation of the fracture properties of polymer mortars reinforced with nanoparticles. Compos. Struct. 2011, 93, 3002–3005. [Google Scholar] [CrossRef]
- Verma, D.; Gope, P.; Shandilya, A.; Gupta, A.; Maheshwari, M. Coir fibre reinforcement and application in polymer composites: A Review. J. Mater. Environ. Sci. 2013, 4, 263–276. [Google Scholar]
- Adeniyi, A.G.; Onifade, D.V.; Ighalo, J.O.; Adeoye, A.S. A review of coir fiber reinforced polymer composites. Compos. Part B Eng. 2019, 176, 107305. [Google Scholar] [CrossRef]
- Dębska, B.; Lichołai, L. The effect of the type of curing agent on selected properties of epoxy mortar modified with PET glycolisate. Constr. Build. Mater. 2016, 124, 11–19. [Google Scholar] [CrossRef]
- PN-EN 196-1: 2016-07. Cement Testing Methods—Part 1: Determination of Strength; PKN: Warsaw, Poland, 2016. [Google Scholar]
- Silva Da Costa Mattos, H.; Reis, J.; Cardoso Moreira, G. Effect of TETRA PAK waste on mixed-mode fracture of polymer mortars using Brazilian Disc Test. In Proceedings of the ABCM International Congress of Mechanical Engineering COBEM2015, Rio de Janeiro, Brazil, 6–11 December 2015. [Google Scholar] [CrossRef]
Type of Resin | Density, g/cm3 | Viscosity 25 °C, MPa∙s | Molecular Weight, g/mol | Epoxy Count LE, mol/100 g |
---|---|---|---|---|
Epidian 5 | 1.17 | 30,000 | 450 | 0.49 |
Type of Curing Agent | Density 20 °C, g/cm3 | Viscosity 25 °C, MPa∙s | Amine Number, mg KOH/g | Form | Main Ingredient |
---|---|---|---|---|---|
Z-1 | 0.978–0.983 | 20–30 | min. 1100 | Liquid pale yellow | triethylenetetramine |
Type of Fibre | Designation | Length, mm | Density, g/cm3 | Cost |
---|---|---|---|---|
Polypropylene | pp | 12 | 0.91 | Lowest |
Glass | g | 12 | 2.50 | Intermediate |
Carbon | c | 12 | 1.60 | Highest |
Fibre Content % | Flexural Strength, MPa | ||
---|---|---|---|
PP Fibres | Glass Fibres | Carbon Fibres | |
0 | 22.55 ± 0.53 | 22.55 ± 0.53 | 22.55 ± 0.53 |
1 | 23.03 ± 1.96 | 23.49 ± 1.00 | 22.77 ± 0.75 |
2 | 25.68 ± 1.57 | 24.60 ± 0.43 | 22.87 ± 1.31 |
3 | 25.15 ± 0.09 | 24.48 ± 1.66 | 23.58 ± 1.14 |
4 | 24.16 ± 2.87 | 23.33 ± 1.13 | 22.78 ± 0.15 |
5 | 23.84 ± 0.52 | 21.13 ± 0.92 | 22.55 ± 1.00 |
Total | 24.07 ± 1.75 | 23.26 ± 1.49 | 22.85 ± 0.84 |
Dependent Variable: Flexural Strength, MPa | ANOVA Rank Kruskal-Wallis; Flexural Strength, MPa Independent (Grouping) Variable: Type of Fibre Kruskal-Wallis Test: H (2, N = 54) = 5.398859; p = 0.0672 | ||
---|---|---|---|
N Important | Total Ranks | Average Rank | |
pp | 18 | 607.50 | 33.75 |
g | 18 | 489.00 | 27.17 |
c | 18 | 388.50 | 21.58 |
Dependent Variable: Flexural Strength, MPa | Value p for Multiple (Two-Sided) Comparisons; Flexural Strength, MPa Independent (Grouping) Variable: Type of Fibre Kruskal-Wallis Test: H (2, N = 54) = 5.398859; p = 0.0672 | ||
---|---|---|---|
pp R:33.75 | g R:27.17 | c R:21:58 | |
pp | 0.628009031 | 0.0610076543 | |
g | 0.628009031 | 0.861035278 | |
c | 0.0610076543 | 0.861035278 |
Dependent Variable: Flexural Strength, MPa | ANOVA Rank Kruskal-Wallis; Flexural Strength, MPa Independent (Grouping) Variable: Amount of Fibre, % Kruskal-Wallis Test: H (5, N = 54) = 15.00301; p = 0.0104 | ||
---|---|---|---|
N Important | Total Ranks | Average Rank | |
0 | 9 | 160.50 | 17.83 |
1 | 9 | 213.00 | 23.67 |
2 | 9 | 339.00 | 37.67 |
3 | 9 | 351.00 | 39.00 |
4 | 9 | 248.50 | 27.61 |
5 | 9 | 173.00 | 19.22 |
Dependent Variable: Flexural Strength, MPa | Value p for Multiple (Two-Sided) Comparisons; Flexural Strength, MPa Independent (Grouping) Variable: Amount of Fibre, % Kruskal-Wallis Test: H (5, N = 54) = 15.00301; p = 0.0104 | |||||
---|---|---|---|---|---|---|
0 R:17.83 | 1 R:23.67 | 2 R:37.67 | 3 R:39.00 | 4 R:27.61 | 5 R:19.22 | |
0 | 1.000000 | 0.112319 | 0.064736 | 1.000000 | 1.000000 | |
1 | 1.000000 | 0.885873 | 0.580241 | 1.000000 | 1.000000 | |
2 | 0.112319 | 0.885873 | 1.000000 | 1.000000 | 0.193212 | |
3 | 0.064736 | 0.580241 | 1.000000 | 1.000000 | 0.114854 | |
4 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | |
5 | 1.000000 | 1.000000 | 0.193212 | 0.114854 | 1.000000 |
Fibre Content, % | Compressive Strength, MPa | ||
---|---|---|---|
PP Fibres | Glass Fibres | Carbon Fibres | |
0 | 93.85 ± 2.55 | 93.85 ± 2.55 | 93.85 ± 2.55 |
1 | 94.37 ± 2.64 | 98.87 ± 2.53 | 96.87 ± 2.36 |
2 | 100.00 ± 1.55 | 99.55 ± 1.46 | 98.13 ± 1.81 |
3 | 100.38 ± 1.02 | 100.03 ± 2.66 | 97.72 ± 2.07 |
4 | 100.98 ± 1.40 | 99.10 ± 3.22 | 96.20 ± 1.11 |
5 | 96.07 ± 2.01 | 97.62 ± 3.26 | 93.03 ± 2.98 |
Total | 97.61 ± 3.49 | 98.17 ± 3.25 | 95.97 ± 2.82 |
Dependent Variable: Compressive Strength, MPa | ANOVA Rank Kruskal-Wallis; Compressive Strength, MPa Independent (Grouping) Variable: Type of Fibre Kruskal-Wallis Test: H (2, N = 108) = 9.134187 p = 0.0104 | ||
---|---|---|---|
N Important | Total Ranks | Average Rank | |
pp | 36 | 2112.50 | 58.68 |
g | 36 | 2266.50 | 62.96 |
c | 36 | 1507.00 | 41.86 |
Dependent Variable: Compressive Strength, MPa | Value p for Multiple (Two-Sided) Comparisons; Compressive Strength, MPa Independent (Grouping) Variable: Type of Fibre Kruskal-Wallis Test: H (2, N = 108) = 9.134187 p = 0.0104 | ||
---|---|---|---|
pp R:58.68 | g R:62.96 | c R:41.86 | |
pp | 1.000000 | 0.068124 | |
g | 1.000000 | 0.012799 | |
c | 0.068124 | 0.012799 |
Dependent Variable: Compressive Strength, MPa | ANOVA Rank Kruskal-Wallis; Compressive Strength, MPa Independent (Grouping) Variable: Amount of Fibre, % Kruskal-Wallis Test: H (5, N = 108) = 44.22612; p = 0.0000 | ||
---|---|---|---|
N Important | Total Ranks | Average Rank | |
0 | 18 | 400.50 | 22.25 |
1 | 18 | 869.00 | 48.28 |
2 | 18 | 1344.50 | 74.69 |
3 | 18 | 1371.50 | 76.19 |
4 | 18 | 1219.00 | 67.72 |
5 | 18 | 681.50 | 37.86 |
Dependent Variable: Compressive Strength, MPa | Value p for Multiple (Two-Sided) Comparisons; Compressive Strength, MPa Independent (Grouping) Variable: Amount of Fibre, % Kruskal-Wallis Test: H (5, N = 108) = 44.22612; p = 0.0000 | |||||
---|---|---|---|---|---|---|
0 R:22.250 | 1 R:48.278 | 2 R:74.694 | 3 R:76.194 | 4 R:67.722 | 5 R:37.861 | |
0 | 0.189998 | 0.000008 | 0.000004 | 0.000199 | 1.000000 | |
1 | 0.189998 | 0.170968 | 0.112452 | 0.938116 | 1.000000 | |
2 | 0.000008 | 0.170968 | 1.000000 | 1.000000 | 0.006281 | |
3 | 0.000004 | 0.112452 | 1.000000 | 1.000000 | 0.003615 | |
4 | 0.000199 | 0.938116 | 1.000000 | 1.000000 | 0.063511 | |
5 | 1.000000 | 1.000000 | 0.006281 | 0.003615 | 0.063511 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębska, B.; Lichołai, L.; Silva, G.J.B.; Altoé Caetano, M. Assessment of the Mechanical Parameters of Resin Composites with the Addition of Various Types of Fibres. Materials 2020, 13, 1378. https://doi.org/10.3390/ma13061378
Dębska B, Lichołai L, Silva GJB, Altoé Caetano M. Assessment of the Mechanical Parameters of Resin Composites with the Addition of Various Types of Fibres. Materials. 2020; 13(6):1378. https://doi.org/10.3390/ma13061378
Chicago/Turabian StyleDębska, Bernardeta, Lech Lichołai, Guilherme Jorge Brigolini Silva, and Marina Altoé Caetano. 2020. "Assessment of the Mechanical Parameters of Resin Composites with the Addition of Various Types of Fibres" Materials 13, no. 6: 1378. https://doi.org/10.3390/ma13061378
APA StyleDębska, B., Lichołai, L., Silva, G. J. B., & Altoé Caetano, M. (2020). Assessment of the Mechanical Parameters of Resin Composites with the Addition of Various Types of Fibres. Materials, 13(6), 1378. https://doi.org/10.3390/ma13061378