Heteroleptic Pt(II)-dithiolene-based Colorimetric Chemosensors: Selectivity Control for Hg(II) Ion Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. General Characterization
2.3. Electrochemical Analysis
2.4. X-ray Diffraction (XRD) for Molecular Structure Analysis
2.5. Density Functional Theory Calculations
3. Results and Discussion
3.1. Synthesis and XRD for Structural Analysis
3.2. Electrochemical Analysis
3.3. Colorimetric Sensing Properties
3.4. Absorption Spectroscopy on Sensing of Metal Ions
3.5. DFT Calculation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valko, M.; Morris, H.; Cronin, M.T.D. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Irudayaraj, J. Fluorescent ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal. Chem. 2011, 83, 2883–2889. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; He, C.A. A General strategy to convert the merr family proteins into highly sensitive and selective fluorescent biosensors for metal ions. J. Am. Chem. Soc. 2004, 126, 728–729. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Q.; Bai, H.; Hong, W.J.; Shi, G.Q. Fluorescence detection of mercury ions in aqueous media with the complex of a cationic oligopyrene derivative and oligothymine. Analyst 2009, 134, 2081–2086. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824–6828. [Google Scholar] [CrossRef]
- Li, D.; Wieckowska, A.; Willner, I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Ed. 2008, 47, 3927–3931. [Google Scholar] [CrossRef]
- Wang, Z.D.; Lee, J.H.; Lu, Y. Highly sensitive “turn-on” fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chem. Commun. 2008, 44, 6005–6007. [Google Scholar] [CrossRef]
- Yigit, M.V.; Mishra, A.; Tong, R.; Cheng, J.J.; Wong, G.C.L.; Lu, Y. Inorganic mercury detection and controlled release of chelating agents from ion-responsive liposomes. Chem. Biol. 2009, 16, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Miller, E.W.; He, Q.; Do, P.H.; Chang, C.J. A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angew. Chem. Int. Ed. 2007, 46, 6658–6661. [Google Scholar] [CrossRef]
- Coskun, A.; Akkaya, E.U. Signal ratio amplification via modulation of resonance energy transfer: Proof of principle in an emission ratiometric Hg(II) sensor. J. Am. Chem. Soc. 2006, 128, 14474–14475. [Google Scholar] [CrossRef]
- Nam, H.J.; Lee, H.-J.; Noh, D.-Y. Novel mercury(II) complexes of 1,3-dithiole-2-thiones containing the 2-pyridyl moiety: Syntheses, X-ray crystal structures and solution behavior. Polyhedron 2004, 23, 115–123. [Google Scholar] [CrossRef]
- Jeon, S.; Suh, W.; Noh, D.-Y. Anion-dependent Hg2+-sensing of colorimetric (dppe)Pt(dmit) chemosensor (dppe: 1,2-bis(diphenylphosphino)ethane; dmit: 1,3-dithiole-2-thione-4,5-dithiolate). Inorg. Chem. Commun. 2017, 81, 43–46. [Google Scholar] [CrossRef]
- Jeon, H.; Suh, W.; Noh, D.-Y. Hg(II) sensing properties of (diphosphine)Pt(dmit) complexes (dmit: C3S52−: 1,3-dithiole-2-thione-4,5-dithiolate). Inorg. Chem. Commun. 2012, 24, 181–185. [Google Scholar] [CrossRef]
- Nomura, M.; Fourmigué, M. Dinuclear Cp* Cobalt Complexes of the 1,2,4,5-Benzenetetrathiolate Bischelating Ligand. Inorg. Chem. 2008, 47, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Doidge-Harrison, S.M.; Irvine, J.T.; Khan, A.; Spencer, G.M.; Wardell, J.L.; Aupers, J.H. Diorganotin 1,3-dithiole-2-thione-4,5-dithiolate compounds, R2Sn(dmit): The crystal structure of MePhSn(dmit). J. Organomet. Chem. 1996, 516, 199–205. [Google Scholar] [CrossRef]
- Bruker AXS Inc. SMART, SAINT-Plus v 6.22 and XPREP; Bruker AXS Inc.: Madison, WI, USA, 2000. [Google Scholar]
- Sheldrick, G.M. SADABS v 2.03; University of Göttingen: Göttingen, Germany, 2002. [Google Scholar]
- Bruker AXS Inc. SHELXTL v 6.10; Bruker AXS Inc.: Madison, WI, USA, 2000. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-Type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Vicente, R.; Ribas, J.; Solans, X.; Font-Altaba, M.; Mari, A.; Loth, P.; Cassoux, P. Electrochemical, EPR, and crystal structure studies on mixed-ligand 4,5-dimercapto-l,3-dithia-2-thione phosphine complexes of nickel, palladium and platinum, M(dmit)(dppe) and Pt(dmit)(PPh3)2. Inorg. Chim. Acta 1987, 132, 229–236. [Google Scholar] [CrossRef]
- Shin, K.S.; Jung, Y.; Lee, S.K.; Fourmigué, M.; Barrière, F.; Bergamini, J.F.; Noh, D.Y. Redox bifunctionality in a Pt(II) dithiolene complex of a tetrathiafulvalene diphosphine ligand. Dalton Trans. 2008, 5869–5871. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Rumble, J. CRC Handbook of Chemistry and Physics, 100th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Bae, S.; Nam, I.; Park, S.; Yoo, Y.G.; Yu, S.; Lee, J.M.; Han, J.W.; Yi, J. Interfacial adsorption and redox coupling of Li4Ti5O12 with nanographene for high-rate lithium storage. ACS Appl. Mater. Interfaces 2015, 7, 16565–16572. [Google Scholar] [CrossRef] [PubMed]
Empirical Formula | C29 H4 F20 P2 Pt S5 |
---|---|
Formula weight | 1149.65 |
Crystal system | Monoclinic |
Space group | P2(1)/n |
a (Å) | 12.2555(10) |
b (Å) | 13.7690(11) |
c (Å) | 40.429(3) |
β (°) | 90.906(2) |
Volume (Å3) | 6821.4(9) |
Z | 8 |
Density Cal. (Mg/m3) | 2.239 |
Absorption coefficient (mm−1) | 4.650 |
F(000) | 4368 |
Crystal size (mm3) | 0.23 × 0.16 × 0.08 |
Theta range for data collection (°) | 1.007 to 26.017 |
Index ranges | −15 ≤ h ≤ 8, −16 ≤ k ≤ 16, −49 ≤ l ≤ 46 |
Reflections collected | 41778 |
Independent reflections | 13361 [R(int) = 0.0618] |
Completeness to theta = 25.242° (%) | 99.8 |
Absorption correction | Semiempirical from equivalents |
Refinement method | Full-matrix least-squares on F2 |
Data/restraints/parameters | 13361/0/1027 |
Goodness-of-fit on F2 | 1.037 |
Final R indices [I > 2σ(I)] | R1 = 0.0442, wR2 = 0.0938 |
R indices (all data) | R1 = 0.0757, wR2 = 0.1147 |
Largest diff. peak and hole (e.Å−3) | 2.062 and −1.187 |
Complexes | Bond Lengths (Å) | Bond Angles (°) | ||||
---|---|---|---|---|---|---|
Pt1-P1 | Pt1-P2 | Pt1-S1 | Pt1-S2 | P1-Pt-P2 | S1-Pt-S2 | |
(dppe)Pt(dmit) 1) | 2.251(3) | 2.258(3) | 2.315(3) | 2.308(3) | 85.2(1) | 90.0(1) |
(dfppe)Pt(dmit) | 2.2473(18) | 2.251(2) | 2.3023(19) | 2.3094(19) | 86.59(7) | 90.45(7) |
2.2554(19) | 2.2549(19) | 2.3107(19) | 2.3094(19) | 86.48(7) | 89.88(7) |
Complexes | −e 1) | Δ(−e) 2) | |||
---|---|---|---|---|---|
Hg2+ | Cu2+ | Ag+ | Na+ | ||
(dppe)Pt(dmit) | 5.11 | −1.76 | −1.42 | −0.66 | −0.08 |
(dfppe)Pt(dmit) | 4.87 | −1.73 | −1.18 | −0.35 | −0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, H.; Ryu, H.; Nam, I.; Noh, D.-Y. Heteroleptic Pt(II)-dithiolene-based Colorimetric Chemosensors: Selectivity Control for Hg(II) Ion Sensing. Materials 2020, 13, 1385. https://doi.org/10.3390/ma13061385
Jeon H, Ryu H, Nam I, Noh D-Y. Heteroleptic Pt(II)-dithiolene-based Colorimetric Chemosensors: Selectivity Control for Hg(II) Ion Sensing. Materials. 2020; 13(6):1385. https://doi.org/10.3390/ma13061385
Chicago/Turabian StyleJeon, Hyokyung, Hwahui Ryu, Inho Nam, and Dong-Youn Noh. 2020. "Heteroleptic Pt(II)-dithiolene-based Colorimetric Chemosensors: Selectivity Control for Hg(II) Ion Sensing" Materials 13, no. 6: 1385. https://doi.org/10.3390/ma13061385
APA StyleJeon, H., Ryu, H., Nam, I., & Noh, D. -Y. (2020). Heteroleptic Pt(II)-dithiolene-based Colorimetric Chemosensors: Selectivity Control for Hg(II) Ion Sensing. Materials, 13(6), 1385. https://doi.org/10.3390/ma13061385