Phase Evolution, Filler-Matrix Interactions, and Piezoelectric Properties in Lead Zirconate Titanate (PZT)-Filled Polymer-Derived Ceramics (PDCs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Metallization and Polarization of the Samples
2.3. Sample Characterization
3. Results and Discussion
3.1. Microstructure Evolution in PZT-Polymer and PZT-PDC Composites
3.2. Phase Evolution in PZT-Polymer and PZT-PDC Composites
3.3. Mechanical and Thermal Properties of PZT-Polymer Composites
3.4. Piezoelectric Properties of PZT-Polymer Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Babu, I.; van den Ende, D.A.; de With, G. Processing and characterization of piezoelectric 0-3 PZT/LCT/PA composites. J. Phys. D Appl. Phys. 2010, 43, 425402. [Google Scholar] [CrossRef] [Green Version]
- Salmang, H.; Scholze, H.; Telle, R. Keramik, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics; Academic Pr: London, UK, 1971. [Google Scholar]
- Seifert, K.; Schlegel, T.; Rödel, J. Entwicklung neuer oxidischer Piezowerkstoffe. Thema Forschung 2006, 10–13. [Google Scholar]
- Newnham, R.E.; Skinner, D.P.; Cross, L.E. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Konegger, T.; Potzmann, R.; Puchberger, M.; Liersch, A. Matrix–filler interactions in polysilazane-derived ceramics with Al2O3 and ZrO2 fillers. J. Eur. Ceram. Soc. 2011, 31, 3021–3031. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gaur, H.; Kulkarni, M.; Patil, G.; Bhattacharya, B.; Sharma, A. PZT–PDMS composite for active damping of vibrations. Compos. Sci. Technol. 2013, 77, 42–51. [Google Scholar] [CrossRef]
- Babu, I.; Hendrix, M.M.R.M.; de With, G. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs. Smart Mater. Struct. 2014, 23, 25029. [Google Scholar] [CrossRef]
- Bhimasankaram, T.; Suryanarayana, S.; Prasad, G. Piezoelectric polymer composite materials. Curr. Sci. 1998, 74, 967–976. [Google Scholar]
- Yamada, T.; Ueda, T.; Kitayama, T. Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 1982, 53, 4328–4332. [Google Scholar] [CrossRef]
- Jayasundere, N.; Smith, B.V. Dielectric constant for binary piezoelectric 0-3 composites. J. Appl. Phys. 1993, 73, 2462–2466. [Google Scholar] [CrossRef]
- Satish, B.; Sridevi, K.; Vijaya, M.S. Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J. Phys. D Appl. Phys. 2002, 35, 2048–2050. [Google Scholar] [CrossRef]
- Babu, I.; de With, G. Highly flexible piezoelectric 0–3 PZT–PDMS composites with high filler content. Compos. Sci. Technol. 2014, 91, 91–97. [Google Scholar] [CrossRef]
- Greil, P. Polymer Derived Engineering Ceramics. Adv. Eng. Mater. 2000, 2, 339–348. [Google Scholar] [CrossRef]
- Furukawa, T.; Fujino, K.; Fukada, E. Electromechanical Properties in the Composites of Epoxy Resin and PZT Ceramics. Jpn. J. Appl. Phys. 1976, 15, 2119–2129. [Google Scholar] [CrossRef]
- Landauer, R. The Electrical Resistance of Binary Metallic Mixtures. J. Appl. Phys. 1952, 23, 779–784. [Google Scholar] [CrossRef]
- Smith, D.S.; Alzina, A.; Bourret, J.; Nait-Ali, B.; Pennec, F.; Tessier-Doyen, N.; Otsu, K.; Matsubara, H.; Elser, P.; Gonzenbach, U.T. Thermal conductivity of porous materials. J. Mater. Res. 2013, 28, 2260–2272. [Google Scholar] [CrossRef] [Green Version]
- Song, B.-M.; Kim, D.-Y.; Shirasaki, S.-I.; Yamamura, H. Effect of Excess PbO on the Densification of PLZT Ceramics. J. Am. Ceram. Soc. 1989, 72, 833–836. [Google Scholar] [CrossRef]
- Vegard, L. Die Konstitution der Mischkristalle und die Raumfllung der Atome. Z. Physik 1921, 5, 17–26. [Google Scholar] [CrossRef]
- Frantti, J.; Lappalainen, J.; Eriksson, S.; Lantto, V.; Nishio, S.; Kakihana, M.; Ivanov, S.; Rundlöf, H. Neutron Diffraction Studies of Pb(ZrxTi1−x)O3 Ceramics. Jpn. J. Appl. Phys. 2000, 39, 5697–5703. [Google Scholar] [CrossRef]
- Joseph, J.; Vimala, T.M.; Sivasubramanian, V.; Murthy, V.R.K. Structural investigations on Pb(ZrxTi1−x)O3 solid solutions using the X-ray Rietveld method. J. Mater. Sci. 2000, 35, 1571–1575. [Google Scholar] [CrossRef]
- Mastelaro, V.R.; Doriguetto, A.C.; Neves, P.P.; Garcia, D.; Lente, M.H.; Mascarenhas, Y.P.; Michalowicz, A.; Eiras, J.A. Structural Characterization of Pb1−xBaxZr0.65Ti0.35O3 Ferroelectric Ceramics. Ferroelectrics 2011, 339, 219–226. [Google Scholar] [CrossRef]
- Glazer, A.M.; Mabud, S.A. Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1978, 34, 1065–1070. [Google Scholar] [CrossRef]
- Yokota, H.; Zhang, N.; Taylor, A.E.; Thomas, P.A.; Glazer, A.M. Crystal structure of the rhombohedral phase of PbZr1−xTixO3 ceramics at room temperature. Phys. Rev. B 2009, 80, 104109. [Google Scholar] [CrossRef]
- Fett, T.; Munz, D.; Thun, G. Tensile and bending strength of piezoelectric ceramics. J. Mater. Sci. Lett. 1999, 18, 1899–1902. [Google Scholar] [CrossRef]
- Fett, T.; Munz, D.; Thun, G. Bending strength of a PZT ceramic under electric fields. J. Eur. Ceram. Soc. 2003, 23, 195–202. [Google Scholar] [CrossRef]
- Malič, B.; Kosec, M.; Kosmač, T. Mechanical and electric properties of PZT-ZrO2 composites. Ferroelectrics 1992, 129, 147–155. [Google Scholar] [CrossRef]
- Kallaev, S.N.; Gadzhiev, G.G.; Kamilov, I.K.; Omarov, Z.M.; Sadykov, S.A.; Reznichenko, L.A. Thermal properties of PZT-based ferroelectric ceramics. Phys. Solid State 2006, 48, 1169–1170. [Google Scholar] [CrossRef]
- Fedorova, A.; Betke, U.; Scheffler, M. Polymer Derived Ceramics with b-Eucryptite Fillers: Filler-Matrix Interactions. Adv. Eng. Mater. 2017, 19, 1700079. [Google Scholar] [CrossRef]
- Fedorova, A.; Scheffler, M. Polymer Derived Ceramics with Negative Thermal Expansion Fillers: Zirconium Tungstate. Adv. Eng. Mater. 2019, 21, 1900116. [Google Scholar] [CrossRef]
Sample | Phase Content and Chemical Composition of Pb(ZrxTi1−x)O3 (PZT) Filler | ||||||||
---|---|---|---|---|---|---|---|---|---|
filler content/wt.% | pyrolysis T/°C | r-PZT/wt.% | Vr-PZT/Å3 | Zr content x | t-PZT/wt.% | Vt-PZT/Å3 | Zr content x | m-ZrO2/wt.% | cristobalite/wt.% |
50 | 200 | 29 ± 1.4 | 408.5 ± 0.2 | 0.534 ± 0.004 | 71 ± 1.4 | 67.60 ± 0.03 | 0.522 ± 0.003 | -/- | -/- |
50 | 750 | 34 ± 2.4 | 408.2 ± 0.3 | 0.524 ± 0.007 | 66 ± 2.4 | 67.53 ± 0.04 | 0.515 ± 0.005 | -/- | -/- |
50 | 1250 | -/- | -/- | -/- | 19 ± 0.3 | 63.70 ± 0.01 | 0.096 ± 0.001 | 81 ± 0.3 | -/- |
50 | 200 | 33 ± 1.0 | 408.2 ± 0.2 | 0.528 ± 0.004 | 67 ± 1.0 | 67.58 ± 0.02 | 0.520 ± 0.002 | -/- | -/- |
100 | 200 | 38.7 ± 0.5 | 407.0 ± 0.6 | 0.502 ± 0.013 | 61.3 ± 0.5 | 67.40 ± 0.01 | 0.501 ± 0.001 | -/- | -/- |
0 | 1250 | -/- | -/- | -/- | -/- | -/- | -/- | -/- | 100 a |
50 | 1250 | -/- | -/- | -/- | 18.1 ± 0.2 | 63.69 ± 0.01 | 0.095 ± 0.001 | 81.9 ± 0.2 | -/- |
100 | 1250 | 1.3 ± 0.2 | 385.0 ± 0.5 | 0.02 ± 0.01 | 59.5 ± 0.5 | 64.92 ± 0.01 | 0.229 ± 0.001 | 39.2 ± 0.5 | -/- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eichhorn, F.; Kellermann, S.; Betke, U.; Fey, T. Phase Evolution, Filler-Matrix Interactions, and Piezoelectric Properties in Lead Zirconate Titanate (PZT)-Filled Polymer-Derived Ceramics (PDCs). Materials 2020, 13, 1520. https://doi.org/10.3390/ma13071520
Eichhorn F, Kellermann S, Betke U, Fey T. Phase Evolution, Filler-Matrix Interactions, and Piezoelectric Properties in Lead Zirconate Titanate (PZT)-Filled Polymer-Derived Ceramics (PDCs). Materials. 2020; 13(7):1520. https://doi.org/10.3390/ma13071520
Chicago/Turabian StyleEichhorn, Franziska, Simone Kellermann, Ulf Betke, and Tobias Fey. 2020. "Phase Evolution, Filler-Matrix Interactions, and Piezoelectric Properties in Lead Zirconate Titanate (PZT)-Filled Polymer-Derived Ceramics (PDCs)" Materials 13, no. 7: 1520. https://doi.org/10.3390/ma13071520
APA StyleEichhorn, F., Kellermann, S., Betke, U., & Fey, T. (2020). Phase Evolution, Filler-Matrix Interactions, and Piezoelectric Properties in Lead Zirconate Titanate (PZT)-Filled Polymer-Derived Ceramics (PDCs). Materials, 13(7), 1520. https://doi.org/10.3390/ma13071520