Impact of Reinforcement Ratio on Shear Behavior of I-Shaped UHPC Beams with and without Fiber Shear Reinforcement
Abstract
:1. Introduction
2. Experimental Program
2.1. Material Properties and Mixture Design
2.2. Material Based and Resistant Features
2.3. Preparition of Test Beams and Four-Point Loading Tests
3. Test Results and Discussions
3.1. Material Test Results
3.2. Structural Test Results
3.2.1. Load-Deflection Relationships
3.2.2. Failure Modes and Cracking Patterns
3.2.3. The First Cracking Load
3.2.4. Ultimate Shear Capacity
4. Numerical Predictions of the Shear and Flexural Capacities
4.1. Prediction of the Nominal Shear Strengths
4.2. Prediction of the Flexural Moment Capacities
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Russell, H.G.; Graybeal, B.A. Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community; FHWA-HRT-13-060; U.S. Federal Highway Administration: McLean, VA, USA, 2013.
- Li, P.P.; Yu, Q.L.; Brouwers, H.J.H. Effect of PCE-type superplasticizer on early-age behaviour of ultra-high performance concrete (UHPC). Constr. Build. Mater. 2017, 153, 740–750. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X. Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cem. Concr. Res. 2015, 69, 1–9. [Google Scholar] [CrossRef]
- Wille, K.; Naaman, A.E.; El-Tawil, S.; Parra-Montesinos, G.J. Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ductility without heat curing. Mater. Struct. 2012, 45, 309–324. [Google Scholar] [CrossRef]
- Kim, D.J.; Park, S.H.; Ryu, G.S.; Koh, K.T. Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Constr. Build. Mater. 2011, 25, 4144–4155. [Google Scholar] [CrossRef]
- Turker, K.; Hasgul, U.; Birol, T.; Yavas, A.; Yazici, H. Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams. Compos. Struct. 2019, 229, 111400. [Google Scholar] [CrossRef]
- Hasgul, U.; Turker, K.; Birol, T.; Yavas, A. Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios. Struct. Concr. 2018, 19, 1577–1590. [Google Scholar] [CrossRef]
- Turker, K.; Birol, T.; Yavas, A.; Hasgul, U.; Yazici, H. Flexural behavior of beams with ultra high performance fiber reinforced concrete. Tech. J. 2019, 30, 8777–8801. [Google Scholar]
- Yavas, A.; Hasgul, U.; Turker, K.; Birol, T. Effective fiber type investigation on the shear behavior of ultrahigh-performance fiber-reinforced concrete beams. Adv. Struct. Eng. 2019, 22, 1591–1605. [Google Scholar] [CrossRef]
- Baby, F.; Marchand, P.; Toutlemonde, F. Shear behavior of ultrahigh performance fiber-reinforced concrete beams. I: Experimental investigation. J. Struct. Eng. 2014, 140, 04013112. [Google Scholar] [CrossRef]
- El-Dieb, A.S.; El-Maaddawy, T.A.; Al-Rawashdah, O. Shear Behavior of Ultra-High-Strength Steel Fiber Reinforced Self-Compacting Concrete Beams. In Proceedings of the First International Conference on Construction Materials and Structures, Johannesburg, South Africa, 24–26 November 2014; pp. 972–979. [Google Scholar]
- Qi, J.-N.; Ma, Z.J.; Wang, J.-Q.; Liu, T.-X. Post-cracking shear strength and deformability of HSS-UHPFRC beams. Struct. Concr. 2016, 17, 1033–1046. [Google Scholar] [CrossRef]
- Pourbaba, M.; Joghataie, A. Shear behavior of ultra-high performance concrete. Constr. Build. Mater. 2018, 183, 554–564. [Google Scholar] [CrossRef]
- Mészöly, T.; Randl, N. Shear behavior of fiber-reinforced ultra-high performance concrete beams. Eng. Struct. 2018, 168, 119–127. [Google Scholar] [CrossRef]
- Kamal, M.M.; Safan, M.A.; Etman, Z.A.; Salama, R.A. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers. HBRC J. 2014, 10, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.T.; Park, J.K.; Pyo, S.; Kim, D.J. Shear resistance of ultra-high-performance fiber-reinforced concrete. Constr. Build. Mater. 2017, 151, 246–257. [Google Scholar] [CrossRef]
- Voo, Y.L.; Poon, W.K.; Foster, S.J. Shear strength of steel fiber-reinforced ultra high-performance concrete beams without stirrups. J. Struct. Eng. 2010, 136, 1393–1400. [Google Scholar] [CrossRef]
- Hussein, L.; Amleh, L. Size effect of ultra-high performance fiber reinforced concrete composite beams in shear. Struct. Concr. 2018, 19, 141–151. [Google Scholar] [CrossRef]
- Ciprian, T.; Dan, B.; Victor, V.; Cornelia, M. Ultra high performance fiber reinforced concrete I beams subjected to shear action. ACTA Technica Napocensis Civ. Eng. Archit. 2012, 55, 121–126. [Google Scholar]
- Baby, F.; Billo, J.; Renaud, J.C.; Massotte, C.; Marchand, P.; Toutlemonde, F.; Simon, A.; Lussou, P. Shear Resistance of Ultra High Performance Fibre-Reinforced Concrete I-Beams. In Fracture Mechanics of Concrete and Concrete Structures—High Performance, Fiber Reinforced Concrete, Special Loadings and Structural Applications; Oh, B.H., Choi, O.C., Chung, L., Eds.; Korea Concrete Institute: Seoul, Korea, 2010; pp. 1411–1417. [Google Scholar]
- Lim, W.Y.; Hong, S.G. Shear tests for ultra-high performance fiber reinforced concrete (UHPFRC) beams with shear reinforcement. Int. J. Concr. Struct. Mater. 2016, 10, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.-Y.; Yuan, T.; Yang, J.M.; Yoon, Y.S. Feasibility of replacing minimum shear reinforcement with steel fibers for sustainable high-strength concrete beams. Eng. Struct. 2017, 147, 207–222. [Google Scholar] [CrossRef]
- Zagon, R.; Matthys, S.; Kiss, Z. Shear behaviour of SFR-UHPC I-shaped beams. Constr. Build. Mater. 2006, 124, 258–268. [Google Scholar] [CrossRef]
- Hasgul, U.; Yavas, A.; Birol, T.; Turker, K. Steel fiber use as shear reinforcement on I-shaped UHP-FRC beams. Appl. Sci. 2019, 9, 5526. [Google Scholar] [CrossRef] [Green Version]
- ACI 318. Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (318R-14); American Concrete Institute: Farmington Hills, MI, USA, 2014. [Google Scholar]
- EN 1992-1-1. Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- NZS 3101. Concrete Structures Standard—Part 1: The Design of Concrete Structures; The Earthquake Commission (EQC) and Department of Building and Housing (DBH): Wellington, New Zealand, 2006. [Google Scholar]
- Model Code 2010. fib Model Code for Concrete Structures 2010; International Federation for Structural Concrete: Berlin, Germany, 2013. [Google Scholar]
- BS EN 12390-3:2019. Testing Hardened Concrete. In Compressive Strength of Test Specimens; British Standard Institute: London, UK, 2019. [Google Scholar]
- ASTM C496/C496M—1. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM C 1609/C 1609M-02. Standard Test Method for Flexural Performance of Fiber Reinforced Concrete (Using Beam with Third Point Loading); ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- TS-500. Requirements for Design and Construction of Reinforced Concrete Structures; Turkish Standards Institution: Ankara, Turkey, 2000. [Google Scholar]
- ASTM A370-19e1. Standard Test Methods and Definitions for Mechanical Testing of Steel Products; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Yang, I.H.; Joh, C.; Kim, B.S. Structural behavior of ultra high performance concrete beams subjected to bending. Eng. Struct. 2010, 32, 3478–3487. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Yoon, Y.S. Structural performance of ultra-high-performance concrete beams with different steel fibers. Eng. Struct. 2015, 102, 409–423. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Banthia, N.; Yoon, Y.S. Experimental and numerical study on flexural behavior of UHPFRC beams with low reinforcement ratios. Can. J. Civ. Eng. 2017, 44, 18–28. [Google Scholar] [CrossRef]
- Dancygier, A.N.; Berkover, E. Cracking localization and reduced ductility in fiber-reinforced concrete beams with low reinforcement ratios. Eng. Struct. 2016, 111, 411–424. [Google Scholar] [CrossRef]
- Deluce, J.R.; Vecchio, F.J. Cracking behavior of steel fiber-reinforced concrete members containing conventional reinforcement. ACI Struct. J. 2013, 110, 481–490. [Google Scholar]
- Yuguang, Y.; Walraven, J.C.; Uijl, J.A. Combined effect of fibers and steel rebars in high performance concrete. Heron 2009, 54, 205–224. [Google Scholar]
- Dancygier, A.N.; Savir, Z. Flexural behavior of HSFRC with low reinforcement ratios. Eng. Struct. 2006, 28, 1503–1512. [Google Scholar] [CrossRef]
- Fehling, E.; Schmidt, M.; Walraven, J.; Leutbecher, T.; Frönlich, S. Ultra-High Performance Concrete UHPC: Fundamentals, Design, Examples, Beton-Kalender; Wilhelm Ernst & Sohn: Berlin, Germany, 2014. [Google Scholar]
- AFGC/SETRA. Recommendation: Ultra High Performance Fibre-Reinforced Concretes; Revised, Association Française de Génie Civil, Service D’études Techniques Des Routes et Autoroutes; AFGC Publication: Paris, France, 2013. [Google Scholar]
- JSCE. Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC); Concrete Engineering Series 82; Japan Society of Civil Engineers: Tokyo, Japan, 2008. [Google Scholar]
- Yang, I.H.; Joh, C.; Kim, B.S. Flexural strength of large-scale ultra high performance concrete prestressed T-beams. Can. J. Civ. Eng. 2011, 38, 1185–1195. [Google Scholar] [CrossRef]
- Qi, J.; Wang, J.; John, Z. Flexural response of high-strength steel-ultra-high-performance fiber reinforced concrete beams based on a mesoscale constitutive model: Experiment and theory. Struct. Concr. 2018, 19, 719–734. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, R.; Jia, L.J.; Wang, J.Y. Flexural behaviour of rebar-reinforced ultrahigh-performance concrete beams. Magn. Concr. Res. 2018, 70, 997–1015. [Google Scholar] [CrossRef]
- Khalil, W.; Tayfur, Y.R. Flexural strength of fibrous ultra high performance reinforced concrete beams. ARPN J. Eng. Appl. Sci. 2013, 8, 200–214. [Google Scholar]
- Imam, M.; Vandewalle, L.; Mortelmans, F. Shear-moment analysis of reinforced high strength concrete beams containing steel fibres. Can. J. Civ. Eng. 1995, 22, 462–470. [Google Scholar] [CrossRef]
- Xia, J.; Chanb, T.; Mackieb, K.R.; Saleemc, M.A.; Mirmiran, A. Sectional analysis for design of ultra-high performance fiber reinforced concrete beams with passive reinforcement. Eng. Struct. 2018, 160, 121–132. [Google Scholar] [CrossRef]
- Lim, T.Y.; Paramasivam, P.; Lee, S.L. Shear and moment capacity of reinforced steel fiber concrete beams. Magn. Concr. Res. 1987, 39, 148–160. [Google Scholar] [CrossRef]
- Bae, B.I.; Choi, H.K.; Choi, C.S. Flexural strength evaluation of reinforced concrete members with ultra high performance concrete. Adv. Mater. Sci. Eng. 2016, 2016, 2815247. [Google Scholar] [CrossRef] [Green Version]
- Hegger, J.; Bertram, G. Shear Carrying Capacity of Ultra-High Performance Concrete Beams. Tailor Made Concrete Structures; Walraven, J.C., Stoelhorst, D., Eds.; Taylor & Francis Group: London, UK, 2008; pp. 341–347. [Google Scholar]
- ACI 544. Design Considerations for Steel Fiber Reinforced Concrete (Reapproved 2009) (ACI 544.4R-88); American Concrete Institute: Farmington Hills, MI, USA, 2009. [Google Scholar]
- Naaman, E.; Najm, H. Bond-slip mechanisms of steel fibers in concrete. ACI Mater. J. 1991, 88, 135–145. [Google Scholar]
- Mansur, M.; Ong, K.; Paramasivam, P. Shear strength of fibrous concrete beams without stirrups. J. Struct. Eng. 1986, 112, 2066–2079. [Google Scholar] [CrossRef]
- Ahmad, S.; Bahij, S.; Al-Osta, M.A.; Adekunle, S.K.; Al-Dulaijan, S.U. Shear behavior of ultra-high-performance concrete beams reinforced with high-strength steel bars. ACI Struct. J. 2019, 116, 3–14. [Google Scholar] [CrossRef]
Mixture | C | SF | BFS | QS1 (0–0.8 mm) | QS2 (1–3 mm) | Water | PCE | Steel Fiber |
---|---|---|---|---|---|---|---|---|
UHPC | 690 | 138 | 276 | 542 | 542 | 199 | 17.25 | — |
SF-UHPC | 690 | 138 | 276 | 535 | 535 | 199 | 17.25 | 2.0 vol% |
Beam | Tensile Reinforcement | Reinforcement Ratio (ρ) | Concrete Mixture | Steel Fiber |
---|---|---|---|---|
P-0.8 | 2ϕ10 | 0.8% | UHPC | — |
P-1.2 | 2ϕ12 | 1.2% | ||
P-1.7 | 2ϕ14 | 1.7% | ||
P-2.2 | 2ϕ16 | 2.2% | ||
F-0.8 | 2ϕ10 | 0.8% | SF-UHPC | 2.0 vol% |
F-1.2 | 2ϕ12 | 1.2% | ||
F-1.7 | 2ϕ14 | 1.7% | ||
F-2.2 | 2ϕ16 | 2.2% |
Mixture | fc′ (MPa) | fsp (MPa) | fp (MPa) | T (kNmm) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
UHPC | 121 | 1.8 | 5.70 | 0.15 | 9.98 | 0.33 | 1.71 | 0.04 |
SF-UHPC | 143 | 1.9 | 17.10 | 0.21 | 17.88 | 0.63 | 152.9 | 11.06 |
Beam | Δcr (mm) | Pcr (kN) | Δp(mm) | Pp (kN) | Vu (kN) | Failure Mode | |
---|---|---|---|---|---|---|---|
P-0.8 | 1.21 | 15.43 | 10.92 | 45.69 | 22.85 | Shear | (DT) |
P-1.2 | 1.23 | 15.62 | 6.52 | 43.12 | 21.56 | Shear | (DT) |
P-1.7 | 0.76 | 9.96 | 7.54 | 50.60 | 25.30 | Shear | (DT + ST) |
P-2.2 | 0.85 | 10.28 | 9.22 | 66.81 | 33.40 | Shear | (DT + ST) |
F-0.8 | 1.98 | 24.77 | 11.01 | 73.52 | — | Flexure | (RR) |
F-1.2 | 1.26 | 19.78 | 17.56 | 99.78 | — | Flexure | (RR) |
F-1.7 | 1.22 | 16.03 | 26.33 | 125.31 | 62.65 | Flexure shear | (DT + ST) |
F-2.2 | 0.89 | 13.38 | 12.97 | 120.18 | 60.09 | Shear | (DT + ST) |
Beam | Design Code | Vnexp (kN) | Vncal (kN) | Vncal/Vnexp |
---|---|---|---|---|
P-0.8 | ACI 318 | 22.85 | 18.18 | 0.80 |
Eurocode 2 | 22.85 | 18.06 | 0.79 | |
NZS 3101 | 22.85 | 17.62 | 0.77 | |
Model Code | 22.85 | 13.10 | 0.57 | |
P-1.2 | ACI 318 | 21.56 | 18.43 | 0.85 |
Eurocode 2 | 21.56 | 20.68 | 0.96 | |
NZS 3101 | 21.56 | 18.14 | 0.84 | |
Model Code | 21.56 | 15.81 | 0.73 | |
P-1.7 | ACI 318 | 25.30 | 18.74 | 0.74 |
Eurocode 2 | 25.30 | 23.22 | 0.92 | |
NZS 3101 | 25.30 | 18.28 | 0.72 | |
Model Code | 25.30 | 16.23 | 0.64 | |
P-2.2 | ACI 318 | 33.40 | 19.05 | 0.57 |
Eurocode 2 | 33.40 | 25.31 | 0.76 | |
NZS 3101 | 33.40 | 18.28 | 0.55 | |
Model Code | 33.40 | 15.05 | 0.45 |
Beam | Mpexp (kNm) | Mpcal (kNm) | Mpcal/Mpexp |
---|---|---|---|
F-0.8 | 25.7 | 26.2 | 1.02 |
F-1.2 | 34.9 | 33.1 | 0.95 |
F-1.8 | 43.8 | 41.1 | 0.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yavas, A.; Goker, C.O. Impact of Reinforcement Ratio on Shear Behavior of I-Shaped UHPC Beams with and without Fiber Shear Reinforcement. Materials 2020, 13, 1525. https://doi.org/10.3390/ma13071525
Yavas A, Goker CO. Impact of Reinforcement Ratio on Shear Behavior of I-Shaped UHPC Beams with and without Fiber Shear Reinforcement. Materials. 2020; 13(7):1525. https://doi.org/10.3390/ma13071525
Chicago/Turabian StyleYavas, Altug, and Cumali Ogun Goker. 2020. "Impact of Reinforcement Ratio on Shear Behavior of I-Shaped UHPC Beams with and without Fiber Shear Reinforcement" Materials 13, no. 7: 1525. https://doi.org/10.3390/ma13071525
APA StyleYavas, A., & Goker, C. O. (2020). Impact of Reinforcement Ratio on Shear Behavior of I-Shaped UHPC Beams with and without Fiber Shear Reinforcement. Materials, 13(7), 1525. https://doi.org/10.3390/ma13071525