Magnetic Nanoparticles Behavior in Biological Solutions; The Impact of Clustering Tendency on Sedimentation Velocity and Cell Uptake
Abstract
:1. Introduction
2. Materials and Methods
2.1. MNPs and Chemicals
2.2. Cell Lines and Culture Media
2.3. Iron Content Measurement
2.4. Physicochemical Characterization of MNPs by Dynamic Light Scattering (DLS)
2.5. Iron Staining and Microscopy (Prussian Blue)
2.6. Determination of the Vs and Vd of MNPs
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Features of MNPs
3.2. Behavior of MNPs in Different Culture Media
3.3. Vs and Vd of MNPs Dispensed in Different Cell Culture Media
3.4. Comparing the Impact of the Vs/Vd Ratio of PVA-Coated MNPs (Low Clustering Behavior) and Vs/Vd Ratio of CMX-Coated MNPs (High Clustering Behavior) on Cellular Uptake in Different Cancer Cell Lines
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nisticò, R.; Cesano, F.; Garello, F. Magnetic materials and systems: Domain structure visualization and other characterization techniques for the application in the materials science and biomedicine. Inorganics 2020, 8, 6. [Google Scholar]
- Alexiou, C.; Jurgons, R.; Seliger, C.; Brunke, O.; Iro, H.; Odenbach, S. Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer Res. 2007, 27, 2019–2022. [Google Scholar] [PubMed]
- Polyak, B.; Friedman, G. Magnetic targeting for site-specific drug delivery: Applications and clinical potential. Expert Opin. Drug Deliv. 2009, 6, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Stapf, M.; Teichgraeber, U.; Hilger, I. Methotrexate-coupled nanoparticles and magnetic nanochemothermia for the relapse-free treatment of t24 bladder tumors. Int. J. Nanomed. 2017, 12, 2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossatz, S.; Grandke, J.; Couleaud, P.; Latorre, A.; Aires, A.; Crosbie-Staunton, K.; Ludwig, R.; Dähring, H.; Ettelt, V.; Lazaro-Carrillo, A. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015, 17, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung-König, J.; Sanhaji, M.; Popescu, R.; Seidl, C.; Zittel, E.; Schepers, U.; Gerthsen, D.; Hilger, I.; Feldmann, C. Microemulsion-made gadolinium carbonate hollow nanospheres showing magnetothermal heating and drug release. Nanoscale 2017, 9, 8362–8372. [Google Scholar]
- Sanhaji, M.; Göring, J.; Couleaud, P.; Aires, A.; Cortajarena, A.L.; Courty, J.; Prina-Mello, A.; Stapf, M.; Ludwig, R.; Volkov, Y. The phenotype of target pancreatic cancer cells influences cell death by magnetic hyperthermia with nanoparticles carrying gemicitabine and the pseudo-peptide nucant. Nanomed. Nanotechnol. Biol. Med. 2019, 20, 101983. [Google Scholar] [CrossRef]
- Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586. [Google Scholar] [CrossRef]
- Skrabalak, S.E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C.M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595. [Google Scholar] [CrossRef] [Green Version]
- De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B.R.; Ma, T.-J.; Oralkan, O. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557. [Google Scholar] [CrossRef]
- Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Lee, J.S.; Zhang, M. Magnetic nanoparticles in mr imaging and drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnovik, D.E.; Nahrendorf, M.; Weissleder, R. Magnetic nanoparticles for mr imaging: Agents, techniques and cardiovascular applications. Basic Res. Cardiol. 2008, 103, 122–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilger, I.; Kaiser, W.A. Iron oxide-based nanostructures for mri and magnetic hyperthermia. Nanomedicine 2012, 7, 1443–1459. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.H.; Arai, T.; Yang, P.C.; McConnell, M.V.; Pauly, J.M.; Conolly, S.M. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2005, 53, 999–1005. [Google Scholar] [CrossRef]
- Purushotham, S.; Ramanujan, R. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater. 2010, 6, 502–510. [Google Scholar] [CrossRef]
- Hilger, I.; Kießling, A.; Romanus, E.; Hiergeist, R.; Hergt, R.; Andrä, W.; Roskos, M.; Linss, W.; Weber, P.; Weitschies, W. Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: Preliminary investigation. Nanotechnology 2004, 15, 1027. [Google Scholar] [CrossRef]
- Dutz, S.; Hergt, R. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int. J. Hyperth. 2013, 29, 790–800. [Google Scholar] [CrossRef]
- Ludwig, R.; Teran, F.J.; Teichgraeber, U.; Hilger, I. Nanoparticle-based hyperthermia distinctly impacts production of ros, expression of ki-67, top2a, and tpx2, and induction of apoptosis in pancreatic cancer. Int. J. Nanomed. 2017, 12, 1009. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Mora, V.; Fernández-Gutiérrez, M.; González-Gómez, Á.; Sanz, B.; San Roman, J.; Goya, G.F.; Hernández, R.; Mijangos, C. Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: From preparation to in vitro studies. Carbohydr. Polym. 2017, 157, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Benito-Miguel, M.; Blanco, M.D.; Gómez, C. Assessment of sequential combination of 5-fluorouracil-loaded-chitosan-nanoparticles and ala-photodynamic therapy on hela cell line. Photodiagnosis Photodyn. Ther. 2015, 12, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Veiseh, O.; Kievit, F.; Bhattarai, N.; Wang, F.; Stephen, Z.; Li, C.; Lee, D.; Ellenbogen, R.G.; Zhang, M. Functionalization of iron oxide magnetic nanoparticles with targeting ligands: Their physicochemical properties and in vivo behavior. Nanomedicine 2010, 5, 1357–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin, R.; Pulat, M. 5-fluorouracil encapsulated chitosan nanoparticles for ph-stimulated drug delivery: Evaluation of controlled release kinetics. J. Nanomater. 2012, 2012, 42. [Google Scholar]
- Jain, T.K.; Richey, J.; Strand, M.; Leslie-Pelecky, D.L.; Flask, C.A.; Labhasetwar, V. Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials 2008, 29, 4012–4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Liu, Y.; Wang, L.; Xu, L.; Bai, R.; Ji, Y.; Wu, X.; Zhao, Y.; Li, Y.; Chen, C. Surface chemistry and aspect ratio mediated cellular uptake of au nanorods. Biomaterials 2010, 31, 7606–7619. [Google Scholar] [CrossRef]
- Lacerda, S.H.D.P.; Park, J.J.; Meuse, C.; Pristinski, D.; Becker, M.L.; Karim, A.; Douglas, J.F. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 2009, 4, 365–379. [Google Scholar] [CrossRef]
- Kim, D.; El-Shall, H.; Dennis, D.; Morey, T. Interaction of plga nanoparticles with human blood constituents. Colloids Surf. B Biointerfaces 2005, 40, 83–91. [Google Scholar] [CrossRef]
- Cho, E.C.; Zhang, Q.; Xia, Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 2011, 6, 385. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Lohse, S.E.; Murphy, C.J.; Fathizadeh, A.; Montazeri, A.; Suslick, K.S. Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett. 2014, 14, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Kettering, M.; Zorn, H.; Bremer-Streck, S.; Oehring, H.; Zeisberger, M.; Bergemann, C.; Hergt, R.; Halbhuber, K.-J.; Kaiser, W.A.; Hilger, I. Characterization of iron oxide nanoparticles adsorbed with cisplatin for biomedical applications. Phys. Med. Biol. 2009, 54, 5109. [Google Scholar] [CrossRef] [PubMed]
- Rüger, R.; Tansi, F.L.; Rabenhold, M.; Steiniger, F.; Kontermann, R.E.; Fahr, A.; Hilger, I. In vivo near-infrared fluorescence imaging of fap-expressing tumors with activatable fap-targeted, single-chain fv-immunoliposomes. J. Control. Release 2014, 186, 1–10. [Google Scholar]
- Teeguarden, J.G.; Hinderliter, P.M.; Orr, G.; Thrall, B.D.; Pounds, J.G. Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 2006, 95, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Hiemenz, P.C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry; Marcel Dekker: New York, NY, USA, 1997; pp. 62–104. [Google Scholar]
- Einstein, A. Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Der Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Albanese, A.; Chan, W.C. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 2011, 5, 5478–5489. [Google Scholar] [CrossRef]
- Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. [Google Scholar] [CrossRef] [Green Version]
- Schäffler, M.; Semmler-Behnke, M.; Sarioglu, H.; Takenaka, S.; Wenk, A.; Schleh, C.; Hauck, S.M.; Johnston, B.D.; Kreyling, W.G. Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology 2013, 24, 265103. [Google Scholar]
- Coulter, J.A.; Jain, S.; Butterworth, K.T.; Taggart, L.E.; Dickson, G.R.; McMahon, S.J.; Hyland, W.B.; Muir, M.F.; Trainor, C.; Hounsell, A.R. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int. J. Nanomed. 2012, 7, 2673. [Google Scholar] [CrossRef] [Green Version]
MNPs | Coating | Size | Weight of Volume (NP/mL) |
---|---|---|---|
fluidMAG-CS | Chitosan | 100 nm | 25 mg NP/mL |
fluidMAG-PVA | Polyvinyl alcohol | 100 nm | 25 mg NP/mL |
fluidMAG-CMX | Carboxymethyldextran | 100 nm | 25 mg NP/mL |
fluidMAG-PEA | Polydimethylamine | 100 nm | 25 mg NP/mL |
Medium Components | Medium 1: DMEM/F12 + 10% FBS | Medium 2: DMEM/F12 + 5% FBS | Medium 3: RPMI 1640 + 10% FBS | Medium 4: MEM + 10% FBS |
---|---|---|---|---|
FBS/medium (v/v) | 10% | 5% | 10% | 10% |
Amino Acids (mg/L) | 1110 | 1110 | 994 | 848 |
Vitamins (mg/L) | 34 | 34 | 44 | 8 |
Inorganic Salts (mg/L) | 10,074 | 10,074 | 9349 | 10,022 |
D-Glucose (mg/L) | 3151 | 3151 | 2000 | 1000 |
Sodium Pyruvate (mg/L) | 55 | 55 | 0 | 0 |
Added Sodium Pyruvate (mM) | 0 | 0 | 1 | 1 |
NEAA (mM) | 0 | 0 | 0 | 0.1 |
MNPs | Size (d.nm) | PdI | ζ-Potential | pH | Iron Content (mg Fe/mL) |
---|---|---|---|---|---|
CS-coated MNPs | 92.1 ± 0.4 | 0.11 | 27.4 ± 7.0 | 7 | 1.01 ± 0.13 |
PVA-coated MNPs | 130.6 ± 2.1 | 0.10 | 4 ± 0.1 | 7 | 1.19 ± 0.11 |
CMX-coated MNPs | 110.6 ± 3.5 | 0.07 | –32.3 ± 0.1 | 7 | 0.98 ± 0.11 |
PEA-coated MNPs | 116.5 ± 1.0 | 0.16 | 36.3 ± 0.3 | 7 | 1.05 ± 0.07 |
MNPs | Parameter | Medium 1 | Medium 2 | Medium 3 | Medium 4 |
---|---|---|---|---|---|
PVA-coated MNPs | Size (d.nm) | 148 ± 1 | 150 ± 2 | 144 ± 3 | 149 ± 1 |
PdI | 0.097 ± 0 | 0.104 ± 0 | 0.092 ± 0 | 0.096 ± 0 | |
ζ-potential | −17 ± 1 | −15 ± 1 | −15 ± 1 | −20 ± 1 | |
CMX-coated MNPs | Size (d.nm) | 288 ± 1 | 356 ± 14 | 365 ± 12 | 263 ± 11 |
PdI | 0.197 ± 0 | 0.222 ± 0 | 0.268 ± 0 | 0.207 ± 0 | |
ζ-potential | −28 ± 0 | −31 ± 0 | −27 ± 0 | −28 ± 1 | |
CS-coated MNPs | Size (d.nm) | 284 ± 13 | 290 ± 15 | 365 ± 33 | 264 ± 12 |
PdI | 0.164 ± 0 | 0.171 ± 0 | 0.2 ± 0 | 0.169 ± 0 | |
ζ-potential | −31 ± 1 | −32 ± 1 | −30 ± 0 | −28 ± 0 | |
PEA-coated MNPs | Size (d.nm) | 784 ± 83 | 950 ± 34 | 1438 ± 218 | 630 ± 45 |
PdI | 0.293 ± 0 | 0.347 ± 0 | 0.481 ± 0 | 0.288 ± 0 | |
ζ-potential | −31 ± 1 | −31 ± 0 | −30 ± 0 | −28 ± 1 |
MNPs | Media | MNPs Size in Medium (d.nm) | Size Increase in Media | Vs (× 10−10 m/s) | Vd (× 10−12 m/s) | Vs/Vd |
---|---|---|---|---|---|---|
PVA-coated MNPs | 1 | 148 ± 1 | 13% | 3.30 | 6.07 | 0.54 |
2 | 150 ± 2 | 15% | 3.39 | 5.99 | 0.56 | |
3 | 144 ± 3 | 10% | 3.12 | 6.24 | 0.5 | |
4 | 149 ± 1 | 14% | 3.34 | 6.03 | 0.49 | |
CMX-coated MNPs | 1 | 288 ± 1 | 160% | 12.51 | 3.12 | 4.01 |
2 | 356 ± 14 | 222% | 19.11 | 2.52 | 7.58 | |
3 | 365 ± 12 | 230% | 20.09 | 2.46 | 8.17 | |
4 | 263 ± 11 | 138% | 10.43 | 3.41 | 3.06 | |
CS-coated MNPs | 1 | 284 ± 13 | 208% | 12.14 | 3.16 | 3.84 |
2 | 290 ± 15 | 215% | 12.66 | 3.10 | 4.08 | |
3 | 365 ± 33 | 296% | 20.05 | 2.46 | 8.15 | |
4 | 264 ± 12 | 187% | 10.54 | 3.40 | 3.1 | |
PEA-coated MNPs | 1 | 784 ± 83 | 573% | 92.63 | 1.14 | 81 |
2 | 950 ± 34 | 715% | 136.1 | 0.94 | 144 | |
3 | 1438 ± 218 | 1134% | 312.1 | 0. 62 | 500 | |
4 | 630 ± 45 | 441% | 59.89 | 1.42 | 42 |
MNPs | Cell Lines | Media | Vs (× 10−10 m/s) | Vd (× 10−12 m/s) | Vs/Vd | Uptake of MNPs (pg Fe/cell) |
---|---|---|---|---|---|---|
PVA-coated MNPs | HT1080 | 1 | 3.30 | 6.07 | 0.54 | 1.0 ± 0.0 |
T24 | 1 | 3.30 | 6.07 | 0.54 | 3.7 ± 0.3 | |
HT29 | 1 | 3.30 | 6.07 | 0.54 | 0.1 ± 0.0 | |
MDA-MB-231 | 2 | 3.39 | 5.99 | 0.56 | 1.9 ± 0.2 | |
BxPC-3 | 3 | 3.12 | 6.24 | 0.5 | 0.2 ± 0.0 | |
LS174T | 4 | 3.34 | 6.03 | 0.49 | 0.2 ± 0.0 | |
CMX-coated MNPs | HT1080 | 1 | 12.51 | 3.12 | 4.01 | 4.8 ± 1.4 |
T24 | 1 | 12.51 | 3.12 | 4.01 | 4.6 ± 0.1 | |
HT29 | 1 | 12.51 | 3.12 | 4.01 | 4.8 ± 0.2 | |
MDA-MB-231 | 2 | 19.11 | 2.52 | 7.58 | 11.2 ± 0.2 | |
BxPC-3 | 3 | 20.09 | 2.46 | 8.17 | 4.6 ± 0.1 | |
LS174T | 4 | 10.43 | 3.41 | 3.06 | 1.3 ± 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabaghi, M.; Hilger, I. Magnetic Nanoparticles Behavior in Biological Solutions; The Impact of Clustering Tendency on Sedimentation Velocity and Cell Uptake. Materials 2020, 13, 1644. https://doi.org/10.3390/ma13071644
Dabaghi M, Hilger I. Magnetic Nanoparticles Behavior in Biological Solutions; The Impact of Clustering Tendency on Sedimentation Velocity and Cell Uptake. Materials. 2020; 13(7):1644. https://doi.org/10.3390/ma13071644
Chicago/Turabian StyleDabaghi, Mohammad, and Ingrid Hilger. 2020. "Magnetic Nanoparticles Behavior in Biological Solutions; The Impact of Clustering Tendency on Sedimentation Velocity and Cell Uptake" Materials 13, no. 7: 1644. https://doi.org/10.3390/ma13071644
APA StyleDabaghi, M., & Hilger, I. (2020). Magnetic Nanoparticles Behavior in Biological Solutions; The Impact of Clustering Tendency on Sedimentation Velocity and Cell Uptake. Materials, 13(7), 1644. https://doi.org/10.3390/ma13071644