Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications
Abstract
:1. Introduction
2. Synthesis of CNTs
2.1. Arc Discharge
2.2. Laser Vaporization
2.3. Chemical Vapor Deposition (CVD)
2.4. Vapor Phase Growth
3. Properties
3.1. Electrical Properties
3.2. Thermal Properties
3.3. Mechanical Properties
4. Application of CNTs
4.1. Agriculture Applications
4.1.1. CNTs in Plant Growth
4.1.2. Biosensor
4.1.3. Pesticide Analysis
4.2. Energy and Environmental Applications
4.2.1. Battery
4.2.2. Wastewater Treatment
4.2.3. Microbial Fuel Cells (MFCs)
4.2.4. High-Efficiency Electrical Devices
5. Conclusions
Funding
Conflicts of Interest
References
- Harrison, B.S.; Atala, A. Carbon nanotube applications for tissue engineering. Biomaterials 2007, 28, 344–353. [Google Scholar] [CrossRef]
- He, H.; Pham-Huy, L.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon Nanotubes: Applications in pharmacy and medicine. BioMed Res. Int. 2013, 2013, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvetat, J.P.; Bonard, J.M.; Thomson, N.; Kulik, A.; Forro, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes. Appl. Phys. A 1999, 69, 255–260. [Google Scholar] [CrossRef]
- Odom, T.W.; Huang, J.-L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Lorents, D.C. Mechanical and thermal properties of carbon nanotubes. Carbon 1995, 33, 925–930. [Google Scholar] [CrossRef]
- Veetil, J.V.; Ye, K. Tailored carbon nanotubes for tissue engineering applications. Biotechnol. Prog. 2009, 25, 709–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindran, S.; Chaudhary, S.; Colburn, B.; Ozkan, M.; Ozkan, C.S. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Lett. 2003, 3, 447–453. [Google Scholar] [CrossRef]
- Wang, Q.H.; Yan, M.; Chang, R.P. Flat panel display prototype using gated carbon nanotube field emitters. Appl. Phys. Lett. 2001, 78, 1294–1296. [Google Scholar] [CrossRef]
- Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320. [Google Scholar] [CrossRef]
- Martel, R.; Schmidt, T.; Shea, H.; Hertel, T.; Avouris, P. Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449. [Google Scholar] [CrossRef] [Green Version]
- Kuche, K.; Maheshwari, R.; Tambe, V.; Mak, K.; Jogi, H.; Raval, N.; Pichika, M.; Kumar Tekade, R. Carbon nanotubes (CNTs) based advanced dermal therapeutics: Current trends and future potential. Nanoscale 2018, 10, 8911–8937. [Google Scholar] [CrossRef] [PubMed]
- Lahiani, M.; Nima, Z.; Villagarcia, H.; Biris, A.S.; Khodakovskaya, M. Assessment of effects of the long-term exposure of agricultural crops to carbon nanotubes. J. Agric. Food Chem. 2018, 66, 6654–6662. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, C.; Ji, Z.; Bouchard, D.C.; Nisbet, R.M.; Schimel, J.P.; Holden, P. Agglomeration determines effects of carbonaceous nanomaterials on soybean nodulation, dinitrogen fixation potential, and growth in Soil. ACS Nano 2017, 11, 5753–5765. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Shen, C.; Wang, Y.; Sun, Y.; Schimel, J.; Gardea-Torresdey, J.; Holden, P. Carbonaceous nanomaterials have higher effects on soybean Rhizosphere prokaryotic communities during therReproductive growth phase than during vegetative growth. Environ. Sci. Technol. 2018, 52, 6636–6646. [Google Scholar] [CrossRef]
- Wong, B.S.; Yoong, S.L.; Jagusiak, A.; Panczyk, T.; Ho, H.K.; Ang, W.H.; Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 2013, 65, 1964–2015. [Google Scholar] [CrossRef]
- Hopley, E.L.; Salmasi, S.; Kalaskar, D.M.; Seifalian, A.M. Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol. Adv. 2014, 32, 1000–1014. [Google Scholar] [CrossRef]
- Gholizadeh, S.; Moztarzadeh, F.; Haghighipour, N.; Ghazizadeh, L.; Baghbani, F.; Shokrgozar, M.A.; Allahyari, Z. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2017, 97, 365–372. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Kim, H.H.; Kim, H.J. The preparation of carbon nanotubes by dc arc discharge using a carbon cathode coated with catalyst. Mater. Sci. Eng. B 2006, 130, 73–80. [Google Scholar] [CrossRef]
- Cui, S.; Scharff, P.; Siegmund, C.; Schneider, D.; Risch, K.; Klötzer, S.; Spiess, S.; Romanus, H.; Schawohl, J. Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N 2 atmosphere. Carbon 2004, 42, 931–939. [Google Scholar] [CrossRef]
- Lange, H.; Sioda, M.; Huczko, A.; Zhu, Y.; Kroto, H.; Walton, D. Nanocarbon production by arc discharge in water. Carbon 2003, 41, 1617–1623. [Google Scholar] [CrossRef]
- Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D.; Smalley, R. Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 1995, 243, 49–54. [Google Scholar] [CrossRef]
- Rinzler, A.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C.; Rodriguez-Macias, F.; Boul, P.J.; Lu, A.H.; Heymann, D.; Colbert, D.T.; et al. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A Mater. Sci. Process. 1998, 67, 29–37. [Google Scholar] [CrossRef]
- Lebedkin, S.; Schweiss, P.; Renker, B.; Malik, S.; Hennrich, F.; Neumaier, M.; Stoermer, C.; Kappes, M.M. Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon 2002, 40, 417–423. [Google Scholar] [CrossRef]
- Jost, O.; Gorbunov, A.; Pompe, W.; Pichler, T.; Friedlein, R.; Knupfer, M.; Reibold, M.; Bauer, H.D.; Dunsch, L.; Golden, M.S.; et al. Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy. Appl. Phys. Lett. 1999, 75, 2217–2219. [Google Scholar] [CrossRef]
- Kong, J.; Cassell, A.M.; Dai, H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 1998, 292, 567–574. [Google Scholar] [CrossRef]
- Cassell, A.M.; Raymakers, J.A.; Kong, J.; Dai, H. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 1999, 103, 6484–6492. [Google Scholar] [CrossRef]
- Lee, C.J.; Park, J. Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Appl. Phys. Lett. 2000, 77, 3397–3399. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.J.; Park, J.; Huh, Y.; Lee, J.Y. Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 2001, 343, 33–38. [Google Scholar] [CrossRef]
- Lee, C.J.; Park, J.; Jeong, A.Y. Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition. Chem. Phys. Lett. 2002, 360, 250–255. [Google Scholar] [CrossRef]
- Chhowalla, M.; Teo, K.; Ducati, C.; Rupesinghe, N.; Amaratunga, G.; Ferrari, A.; Roy, D.; Robertson, J.; Milne, W.I. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 2001, 90, 5308–5317. [Google Scholar] [CrossRef]
- Bower, C.; Zhou, O.; Zhu, W.; Werder, D.; Jin, S. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 2000, 77, 2767–2769. [Google Scholar] [CrossRef]
- Qin, L.; Zhou, D.; Krauss, A.; Gruen, D. Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 1998, 72, 3437–3439. [Google Scholar] [CrossRef]
- Hofmann, S.; Ducati, C.; Robertson, J.; Kleinsorge, B. Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2003, 83, 135–137. [Google Scholar] [CrossRef]
- Lee, C.J.; Lyu, S.C.; Kim, H.-W.; Park, C.-Y.; Yang, C.-W. Large-scale production of aligned carbon nanotubes by the vapor phase growth method. Chem. Phys. Lett. 2002, 359, 109–114. [Google Scholar] [CrossRef]
- Yang, K.; Gu, M.; Guo, Y.; Pan, X.; Mu, G. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 2009, 47, 1723–1737. [Google Scholar] [CrossRef]
- Gulotty, R.; Castellino, M.; Jagdale, P.; Tagliaferro, A.; Balandin, A.A. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 2013, 7, 5114–5121. [Google Scholar] [CrossRef] [Green Version]
- Arora, N.; Sharma, N. Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam. Relat. Mater. 2014, 50, 135–150. [Google Scholar] [CrossRef]
- Ma, L.; Hart, A.; Ozden, S.; Vajtai, R.; Ajayan, P. Spiers memorial lecture: Advances of carbon nanomaterials. Faraday Discuss 2014, 173, 9–46. [Google Scholar] [CrossRef]
- Odom, T.W.; Huang, J.-L.; Kim, P.; Lieber, C.M. Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B 2000, 104, 2794–2809. [Google Scholar] [CrossRef]
- Saifuddin, N.; Raziah, A.; Junizah, A. Carbon nanotubes: A review on structure and their interaction with proteins. J. Chem. 2013, 2013, 1–18. [Google Scholar] [CrossRef]
- Charlier, J.-C.; Issi, J.-P. Electronic structure and quantum transport in carbon nanotubes. Appl. Phys. A Mater. Sci. Process. 1998, 67, 79–87. [Google Scholar] [CrossRef]
- Sanvito, S.; Kwon, Y.-K.; Tománek, D.; Lambert, C.J. Fractional quantum conductance in carbon nanotubes. Phys. Rev. Lett. 2000, 84, 1974. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Shin, T.S.; Do Choi, H.; Kwon, J.H.; Chung, Y.-C.; Yoon, H.G. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 2005, 43, 23–30. [Google Scholar] [CrossRef]
- Ram, R.; Rahaman, M.; Khastgir, D. Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: Modelling of DC conductivity. Compos. Part A Appl. Sci. Manuf. 2015, 69, 30–39. [Google Scholar] [CrossRef]
- Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483. [Google Scholar] [CrossRef] [Green Version]
- Kymakis, E.; Alexandou, I.; Amaratunga, G. Single-walled carbon nanotube-polymer composites: Electrical, optical and structural investigation. Synth. Met. 2002, 127, 59–62. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Qian, D.; Liu, W.K. Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements. C. R. Phys. 2003, 4, 993–1008. [Google Scholar] [CrossRef]
- Wei, L.; Kuo, P.; Thomas, R.; Anthony, T.; Banholzer, W. Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 1993, 70, 3764. [Google Scholar] [CrossRef]
- Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 1999, 59, R2514. [Google Scholar] [CrossRef]
- Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-Pardo, F.; Martinez-Hernandez, A.L.; Velasco-Santos, C. Carbon nanotube and graphene based polyamide electrospun nanocomposites: A review. J. Nanomater. 2016, 2016, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jackson, E.M.; Laibinis, P.E.; Collins, W.E.; Ueda, A.; Wingard, C.D.; Penn, B. Development and thermal properties of carbon nanotube-polymer composites. Compos. Part B Eng. 2016, 89, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Treacy, M.J.; Ebbesen, T.; Gibson, J. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- Krishnan, A.; Dujardin, E.; Ebbesen, T.; Yianilos, P.; Treacy, M. Young’s modulus of single-walled nanotubes. Phys. Rev. B 1998, 58, 14013. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Portal, D.; Artacho, E.; Soler, J.M.; Rubio, A.; Ordejón, P. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 1999, 59, 12678. [Google Scholar] [CrossRef] [Green Version]
- Goze, C.; Vaccarini, L.; Henrard, L.; Bernier, P.; Hemandez, E.; Rubio, A. Elastic and mechanical properties of carbon nanotubes. Synth. Met. 1999, 103, 2500–2501. [Google Scholar] [CrossRef]
- Chatterjee, S.; Nafezarefi, F.; Tai, N.; Schlagenhauf, L.; Nüesch, F.; Chu, B. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 2012, 50, 5380–5386. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, X.; Zhu, Y.; Hui, D.; Qiu, Y. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Compos. Part B Eng. 2014, 56, 408–412. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef]
- Zaytseva, O.; Neumann, G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Juganson, K.; Ivask, A.; Blinova, I.; Mortimer, M.; Kahru, A. NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials. Beilstein J. Nanotechnol. 2015, 6, 1788–1804. [Google Scholar] [CrossRef] [PubMed]
- Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z.; Watanabe, F.; Biris, A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 2009, 3, 3221–3227. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Basu, R.; Das, S.; Nandy, P. Beneficial role of carbon nanotubes on mustard plant growth: An agricultural prospect. J. Nanopart. Res. 2011, 3, 4519–4528. [Google Scholar] [CrossRef]
- Ratnikova, T.A.; Podila, R.; Rao, A.M.; Taylor, A.G. Tomato seed coat permeability to selected carbon nanomaterials and enhancement of germination and seedling growth. Sci. World J. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Lahiani, M.H.; Chen, J.; Irin, F.; Puretzky, A.A.; Green, M.J.; Khodakovskaya, M.V. Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon 2015, 81, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Ballesta, M.C.; Zapata, L.; Chalbi, N.; Carvajal, M. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J. Nanobiotechnol. 2016, 14, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Lahiani, M.H.; Dervishi, E.; Chen, J.; Nima, Z.; Gaume, A.; Biris, A.S.; Khodakovskaya, M.V. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl. Mater. Interfaces 2013, 5, 7965–7973. [Google Scholar] [CrossRef]
- Khodakovskaya, M.V.; Kim, B.S.; Kim, J.N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C.E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small 2013, 9, 115–123. [Google Scholar] [CrossRef]
- Jiang, Y.; Hua, Z.; Zhao, Y.; Liu, Q.; Wang, F.; Zhang, Q. The effect of carbon nanotubes on rice seed germination and root growth. In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012); Springer-Nature: Berlin, Germany, 2014; pp. 1207–1212. [Google Scholar]
- Cañas, J.E.; Long, M.; Nations, S.; Vadan, R.; Dai, L.; Luo, M.; Ambikapathi, E.; Lee, E.H.; Olszyk, D. Effects of functionalized and nonfunctionalized single walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 2008, 27, 1922–1931. [Google Scholar] [CrossRef]
- Deng, Y. Uptake and Accumulation of Engineered Nanomaterials by Agricultural Crops and Associated Risks in the Environment and Food Safety. Ph.D. Thesis, UMass Amherst, Amherst, MA, USA, September 2006. [Google Scholar]
- Chang, X.; Song, Z.; Xu, Y.; Gao, M. Effects of carbon nanotubes on growth of wheat seedlings and Cd uptake. Chemosphere 2020, 240, 124931–124941. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.M.; Kohl, K.; Deleon, S.; Payton, P.; Irin, F.; Saed, M.; Shah, S.A.; Green, M.J.; Canas-Carrel, J.E. Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil. Chemosphere 2016, 152, 117–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, K.; Lahiani, M.; Hicks, V.; Hudson, M.; Green, M.; Khodakovskaya, M. Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE 2018, 13, e0202274. [Google Scholar] [CrossRef] [Green Version]
- Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in biosensors for detection of pathogens in food and water. Enzym. Microb. Technol. 2003, 32, 3–13. [Google Scholar] [CrossRef]
- Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 1999, 14, 599–624. [Google Scholar] [CrossRef]
- Yang, N.; Chen, X.; Ren, T.; Zhang, P.; Yang, D. Carbon nanotube based biosensors. Sens. Actuators B Chem. 2015, 207, 690–715. [Google Scholar] [CrossRef]
- Baruah, S.; Dutta, J. Nanotechnology applications in pollution sensing and degradation in agriculture: A review. Environ. Chem. Lett. 2009, 7, 191–204. [Google Scholar] [CrossRef]
- Sanvicens, N.; Pastells, C.; Pascual, N.; Marco, M.-P. Nanoparticle-based biosensors for detection of pathogenic bacteria. TrAC Trends Anal. Chem. 2009, 28, 1243–1252. [Google Scholar] [CrossRef]
- Simonian, A.; Good, T.; Wang, S.-S.; Wild, J. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal. Chim. Acta 2005, 534, 69–77. [Google Scholar] [CrossRef]
- Nam, J.-M.; Thaxton, C.S.; Mirkin, C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003, 301, 1884–1886. [Google Scholar] [CrossRef] [Green Version]
- Kruss, S.; Hilmer, A.J.; Zhang, J.; Reuel, N.F.; Mu, B.; Strano, M.S. Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 2013, 65, 1933–1950. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016, 34, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Pérez-López, B.; Merkoçi, A. Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Technol. 2011, 22, 625–639. [Google Scholar] [CrossRef]
- Mohanraj, V.; Chen, Y. Nanoparticles: A review. Trop. J. Pharm. Res. 2006, 5, 561–573. [Google Scholar] [CrossRef] [Green Version]
- Kurbanoglu, S.; Ozkan, S.A.; Merkoçi, A. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens. Bioelectron. 2017, 89, 886–898. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Nanomaterial-based electrochemical biosensors. Analyst 2005, 130, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhu, Z.; Du, D.; Lin, Y. Nanomaterial-based electrochemical biosensors for food safety. J. Electroanal. Chem. 2016, 781, 147–154. [Google Scholar] [CrossRef]
- Chen, H.; Zuo, X.; Su, S.; Tang, Z.; Wu, A.; Song, S.; Zhang, D.; Fan, C. An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetycholinesterase activity. Analyst 2008, 133, 1182–1186. [Google Scholar] [CrossRef]
- Jha, N.; Ramaprabhu, S. Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon. Nanoscale 2010, 2, 806–810. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, C.; Jia, J.; Sun, Y.; Fu, Q.; Pan, C. A wrinkled Ag/CNTs-PDMS composite film for a high-performance flexible sensor and its applications in human-body single monitoring. Nanomaterials 2019, 9, 850. [Google Scholar] [CrossRef] [Green Version]
- Scholl, F.; Morais, P.; Gabriel, R.; Schöning, M.; Siqueira, J.; Caseli, L. Carbon nanotubes arranged as smart interfaces in lipid Langmuir-Blodgett films enhancing the enzymatic properties of penicillinase for biosensing applications. ACS Appl. Mater. Interfaces 2017, 9, 31054–31066. [Google Scholar] [CrossRef] [PubMed]
- Pyrzynska, K. Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 2011, 83, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.; Tuzen, M.; Soylak, M. Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J. Hazard. Mater. 2009, 169, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Ding, Q.; Song, F. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J. Sep. Sci. 2005, 28, 2339–2343. [Google Scholar] [CrossRef]
- Du, D.; Wang, M.; Zhang, J.; Cai, J.; Tu, H.; Zhang, A. Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochem. Commun. 2008, 10, 85–89. [Google Scholar] [CrossRef]
- Cai, Y.-Q.; Cai, Y.-E.; Mou, S.-F.; Lu, Y.-Q. Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J. Chromatogr. A 2005, 1081, 245–247. [Google Scholar] [CrossRef]
- Su, R.; Xu, X.; Wang, X.; Li, D.; Li, X.; Zhang, H.; Yu, A. Determination of organophosphorus pesticides in peanut oil by dispersive solid phase extraction gas chromatography–mass spectrometry. J. Chromatogr. B 2011, 879, 3423–3428. [Google Scholar] [CrossRef]
- Zhu, X.; Cui, Y.; Chang, X.; Wang, H. Selective solid-phase extraction and analysis of trace-level Cr (III), Fe (III), Pb (II), and Mn (II) Ions in wastewater using diethylenetriamine-functionalized carbon nanotubes dispersed in graphene oxide colloids. Talanta 2016, 146, 358–363. [Google Scholar] [CrossRef]
- Asensio-Ramos, M.; Hernández-Borges, J.; Borges-Miquel, T.; Rodríguez-Delgado, M. Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental and forestal soils. Anal. Chim. Acta 2009, 647, 167–176. [Google Scholar] [CrossRef]
- Wang, J.-X.; Jiang, D.-Q.; Gu, Z.-Y.; Yan, X.-P. Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J. Chromatogr. A 2006, 1137, 8–14. [Google Scholar] [CrossRef]
- Wu, F.; Lu, W.; Chen, J.; Liu, W.; Zhang, L. Single-walled carbon nanotubes coated fibers for solid-phase microextraction and gas chromatography–mass spectrometric determination of pesticides in Tea samples. Talanta 2010, 82, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.; Liu, J.; Wei, Y.; Jiang, K.; Fan, S.; Liu, J.; Jiang, G. Preparation of single-walled carbon nanotube fiber coating for solid-phase microextraction of organochlorine pesticides in lake water and wastewater. J. Sep. Sci. 2007, 30, 2138–2143. [Google Scholar] [CrossRef] [PubMed]
- Saraji, M.; Jafari, M.T.; Mossaddegh, M. Carbon nanotubes@ silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography–corona discharge ion mobility spectrometric detection. J. Chromatogr. A 2016, 1429, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wang, L.; Zeng, B.; Zhao, F. Ionic liquid polymer functionalized carbon nanotubes-doped poly (3, 4-ethylenedioxythiophene) for highly-efficient solid-phase microextraction of carbamate pesticides. J. Chromatogr. A 2016, 1444, 42–49. [Google Scholar] [CrossRef]
- López-Feria, S.; Cárdenas, S.; Valcárcel, M. One step carbon nanotubes-based solid-phase extraction for the gas chromatographic–mass spectrometric multiclass pesticide control in virgin olive oils. J. Chromatogr. A 2009, 1216, 7346–7350. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technol. 2010, 101, 3040–3046. [Google Scholar] [CrossRef]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef]
- Frackowiak, E.; Beguin, F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 2002, 40, 1775–1787. [Google Scholar] [CrossRef]
- Chen, W.X.; Lee, J.Y.; Liu, Z. The nanocomposites of carbon nanotube with Sb and SnSb 0.5 as Li-ion battery anodes. Carbon 2003, 41, 959–966. [Google Scholar] [CrossRef]
- Guoping, W.; Qingtang, Z.; Zuolong, Y.; MeiZheng, Q. The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes. Solid State Ion. 2008, 179, 263–268. [Google Scholar] [CrossRef]
- Maurin, G.; Bousquet, C.; Henn, F.; Bernier, P.; Almairac, R.; Simon, B. Electrochemical lithium intercalation into multiwall carbon nanotubes: A micro-Raman study. Solid State Ion. 2000, 136, 1295–1299. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Wu, H.-Q. Electrochemical intercalation of lithium into raw carbon nanotubes. Mater. Chem. Phys. 2001, 71, 7–11. [Google Scholar] [CrossRef]
- Yang, S.; Song, H.; Chen, X.; Okotrub, A.; Bulusheva, L. Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries. Electrochim. Acta 2007, 52, 5286–5293. [Google Scholar] [CrossRef]
- Wu, G.; Wang, C.; Zhang, X.; Yang, H.; Qi, Z.; He, P.; Li, W.Z. Structure and lithium insertion properties of carbon nanotubes. J. Electrochem. Soc. 1999, 146, 1696–1701. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Ahn, J.-H.; Yao, J.; Lindsay, M.; Liu, H.; Dou, S. Preparation and characterization of carbon nanotubes for energy storage. J. Power Sources 2003, 119, 16–23. [Google Scholar] [CrossRef]
- Eom, J.; Kwon, H.; Liu, J.; Zhou, O. Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD. Carbon 2004, 42, 2589–2596. [Google Scholar] [CrossRef]
- Yang, S.; Huo, J.; Song, H.; Chen, X. A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta 2008, 53, 2238–2244. [Google Scholar] [CrossRef]
- Kawasaki, S.; Hara, T.; Iwai, Y.; Suzuki, Y. Metallic and semiconducting single-walled carbon nanotubes as the anode material of Li ion secondary battery. Mater. Lett. 2008, 62, 2917–2920. [Google Scholar] [CrossRef]
- De las Casas, C.; Li, W. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74–85. [Google Scholar] [CrossRef]
- Chen, M.; Liu, J.; Chao, D.; Wang, J.; Yin, J.; Lin, J.; Fan, H.J.; Shen, Z.X. Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 2014, 9, 364–372. [Google Scholar] [CrossRef]
- Cohn, A.P.; Oakes, L.; Carter, R.; Chatterjee, S.; Westover, A.S.; Share, K.; Pint, C.L. Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes. Nanoscale 2014, 6, 4669–4675. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yu, H.; Tan, H.; Zhu, J.; Zhang, W.; Wang, C.; Zhang, J.; Wang, Y.; Lv, Y.; Zeng, Z.; et al. Carbon Nanotube-Encapsulated Noble Metal Nanoparticle Hybrid as a Cathode Material for Li-Oxygen Batteries. Adv. Funct. Mater. 2014, 24, 6516–6523. [Google Scholar] [CrossRef]
- Wang, G.; Shen, X.; Yao, J.; Wexler, D.; Ahn, J.-H. Hydrothermal synthesis of carbon nanotube/cobalt oxide core-shell one-dimensional nanocomposite and application as an anode material for lithium-ion batteries. Electrochem. Commun. 2009, 11, 546–549. [Google Scholar] [CrossRef]
- Qin, L.; Liang, S.; Pan, A.; Tan, X. Zn2SnO4/carbon nanotubes composite with enhanced electrochemical performance as anode materials for lithium-ion batteries. Mater. Lett. 2016, 164, 44–47. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoon, C.S.; Hwang, J.-Y.; Kim, S.-J.; Maglia, F.; Lamp, P.; Myung, S.T.; Sun, Y.K. High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li [Ni0.85Co0.05Mn0.10] O2 cathode. Energy Environ. Sci. 2016, 9, 2152–2158. [Google Scholar] [CrossRef]
- Garcia, J.; Gomes, H.; Serp, P.; Kalck, P.; Figueiredo, J.; Faria, J. Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation. Carbon 2006, 44, 2384–2391. [Google Scholar] [CrossRef]
- Sarkar, B.; Mandal, S.; Tsang, Y.; Kumar, P.; Kim, K.; Ok, Y. Designer carbon nanotubes for contaminant removal in water and waste water: A critical review. Sci. Total Environ. 2018, 612, 561–581. [Google Scholar] [CrossRef]
- Deligiorgis, A.; Xekoukoulotakis, N.P.; Diamadopoulos, E.; Mantzavinos, D. Electrochemical oxidation of table olive processing wastewater over boron-doped diamond electrodes: Treatment optimization by factorial design. Water Res. 2008, 42, 1229–1237. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Jia, J. Improvement of electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor. Environ. Sci. Technol. 2009, 43, 3796–3802. [Google Scholar] [CrossRef]
- Chen, G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41. [Google Scholar] [CrossRef]
- Qu, X.; Alvarez, P.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, N.; Sahu, J.; Abdullah, E.; Jayakumar, N. Removal of heavy metals from wastewater using carbon nanotubes. Sep. Purif. Rev. 2014, 43, 311–338. [Google Scholar] [CrossRef]
- Simate, G.S.; Iyuke, S.E.; Ndlovu, S.; Heydenrych, M. The heterogeneous coagulation and flocculation of brewery wastewater using carbon nanotubes. Water Res. 2012, 46, 1185–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Xu, L.; He, J.; Zhang, J. Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim. Acta 2014, 117, 192–201. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, J.; Ong, C.N.; Vecitis, C.D.; Zhou, Z. Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. Environ. Sci. Water Res. Technol. 2015, 1, 769–778. [Google Scholar] [CrossRef]
- Wang, B.; Li, F.; Yang, P.; Yang, Y.; Hu, J.; Wei, J.; Yu, Q. In situ synthesis of diatomite−carbon Nanotube composite adsorbent and its adsorption characteristics for phenolic compounds. J. Chem. Eng. Data. 2016, 64, 360–371. [Google Scholar] [CrossRef]
- Ma, J.; Ma, Y.; Yu, F. A novel one-pot route for large-scale synthesis of novel magnetic CNTs/Fe@C hybrids and their applications for binnary dye removal. ACS Sustain. Chem. Eng. 2018, 6, 8178–8191. [Google Scholar] [CrossRef]
- Lee, J.; Ye, Y.; Ward, A.; Zhou, C.; Chen, V.; Minett, A.; Lee, S.; Liu, Z.; Chae, S.; Shi, J. High flux and high selectivity carbon nanotube composite membranes for natural organic matter removal. Sep. Purif. Technol. 2016, 163, 109–119. [Google Scholar] [CrossRef]
- Qu, Y.; Ma, Q.; Deng, J.; Shen, W.; Zhang, X.; He, Z.; Nostrand, J.D.; Zhou, J.; Zhou, J. Responses of microbial communities to single-walled carbon nanotubes in phenol wastewater treatment systems. Enviorn. Sci. Technol. 2015, 49, 4627–4635. [Google Scholar] [CrossRef]
- Song, Y.-C.; Woo, J.-H.; Yoo, K.-S. Materials for microbial fuel cell: Electrodes, separator and current collector. J. Korean Soc. Environ. Eng. 2009, 31, 693–704. [Google Scholar]
- Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grandolfo, M.; Righi, M.; Spalluto, G.; Prato, M.; Ballerini, L. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 2005, 5, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, Z.; Plaseied, A.; Jenkins, P.; Simpson, L.; Engtrakul, C.; Ren, Z. Carbon nanotube modified air-cathodes for electricity production in microbial fuel cells. J. Power Sources 2011, 196, 7465–7469. [Google Scholar] [CrossRef]
- Ghasemi, M.; Daud, W.R.W.; Hassan, S.H.; Jafary, T.; Rahimnejad, M.; Ahmad, A.; Yazdio, M.H. Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell. Int. J. Hydrogen Energy 2016, 41, 4872–4878. [Google Scholar] [CrossRef]
- Hou, Y.; Yuan, H.; Wen, Z.; Cui, S.; Guo, X.; He, Z.; Chen, J. Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells. J. Power Sources 2016, 307, 561–568. [Google Scholar] [CrossRef] [Green Version]
- He, Y.-R.; Du, F.; Huang, Y.-X.; Dai, L.-M.; Li, W.-W.; Yu, H.-Q. Preparation of microvillus-like nitrogen-doped carbon nanotubes as the cathode of a microbial fuel cell. J. Mater. Chem. A 2016, 4, 1632–1636. [Google Scholar] [CrossRef]
- Sanchez, D.V.; Huynh, P.; Kozlov, M.E.; Baughman, R.H.; Vidic, R.D.; Yun, M. Carbon nanotube/platinum (Pt) sheet as an improved cathode for microbial fuel cells. Energy Fuels 2010, 24, 5897–5902. [Google Scholar] [CrossRef]
- Ghasemi, M.; Ismail, M.; Kamarudin, S.K.; Saeedfar, K.; Daud, W.R.W.; Hassan, S.H.; Heng, L.Y.; Alam, J.; Oh, S.E. Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl. Energy 2013, 102, 1050–1056. [Google Scholar] [CrossRef]
- Ghasemi, M.; Shahgaldi, S.; Ismail, M.; Kim, B.H.; Yaakob, Z.; Daud, W.R.W. Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. Int. J. Hydrogen Energy 2011, 36, 13746–13752. [Google Scholar] [CrossRef]
- Feng, L.; Yan, Y.; Chen, Y.; Wang, L. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells. Energy Environ. Sci. 2011, 4, 1892–1899. [Google Scholar] [CrossRef]
- Zou, L.; Qiao, Y.; Wu, X.-S.; Li, C.M. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells. J. Power Sources 2016, 328, 143–150. [Google Scholar] [CrossRef]
- Ren, H.; Pyo, S.; Lee, J.-I.; Park, T.-J.; Gittleson, F.S.; Leung, F.C.; Kim, J.; Taylor, A.D.; Lee, H.S.; Chae, J. A high power density miniaturized microbial fuel cell having carbon nanotube anodes. J. Power Sources 2015, 273, 823–830. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, C.M.; Bao, S.-J.; Bao, Q.-L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 2007, 170, 79–84. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Wu, C.-C.; Lee, C.-Y.; Shih, E.P. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J. Power Sources 2009, 194, 199–205. [Google Scholar] [CrossRef]
- Chou, H.-T.; Lee, H.-J.; Lee, C.-Y.; Tai, N.-H.; Chang, H.-Y. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold. Bioresource Technol. 2014, 169, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Nützenadel, C.; Züttel, A.; Chartouni, D.; Schlapbach, L. Electrochemical storage of hydrogen in nanotube materials. Electrochem. Solid State Lett. 1999, 2, 30–32. [Google Scholar] [CrossRef]
- Cheng, H.-M.; Yang, Q.-H.; Liu, C. Hydrogen storage in carbon nanotubes. Carbon 2001, 39, 1447–1454. [Google Scholar] [CrossRef]
- Dresselhaus, M.; Williams, K.; Eklund, P. Hydrogen adsorption in carbon materials. Mrs Bull. 1999, 24, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Panella, B.; Hirscher, M.; Roth, S. Hydrogen adsorption in different carbon nanostructures. Carbon 2005, 43, 2209–2214. [Google Scholar] [CrossRef]
- Jordá-Beneyto, M.; Suárez-García, F.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 2007, 45, 293–303. [Google Scholar] [CrossRef]
- Ariharan, A.; Viswanathan, B.; Nandhakumar, V. Hydrogen storage on boron substituted carbon materials. Int. J. Hydrogen Energy 2016, 41, 3527–3536. [Google Scholar] [CrossRef]
- Zhao, T.; Ji, X.; Jin, W.; Yang, W.; Li, T. Hydrogen storage capacity of single-walled carbon nanotube prepared by a modified arc discharge. Fuller. Nanotubes Carbon Nanostruct. 2017, 25, 355–358. [Google Scholar] [CrossRef]
- Silambarasan, D.; Surya, V.; Vasu, V.; Iyakutti, K. One-step process of hydrogen storage in single walled carbon nanotubes-tin oxide nano composite. Int. J. Hydrogen Energy 2013, 38, 4011–4016. [Google Scholar] [CrossRef]
- Cho, J.H.; Yang, S.J.; Lee, K.; Park, C.R. Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene. Int. J. Hydrogen Energy 2011, 36, 12286–12295. [Google Scholar] [CrossRef]
- Shin, W.H.; Jeong, H.M.; Kim, B.G.; Kang, J.K.; Choi, J.W. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 2012, 12, 2283–2288. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, H.; Gao, B.; Tang, X.; Kleinhammes, A.; Fleming, L.; Wu, Y.; Zhou, O. Lithium intercalation into opened single-wall carbon nanotubes: Storage capacity and electronic properties. Phys. Rev. Lett. 2001, 88, 015502. [Google Scholar] [CrossRef] [Green Version]
- Frackowiak, E.; Metenier, K.; Bertagna, V.; Beguin, F. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 2000, 77, 2421–2423. [Google Scholar] [CrossRef]
- Wang, Y.; Fugetsu, B.; Wang, Z.; Gong, W.; Sakata, I.; Morimoto, S.; Hashimoto, Y.; Endo, M.; Dresselhaus, M.; Terrones, M. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Sci. Rep. 2017, 7, 40259. [Google Scholar] [CrossRef]
- Cheng, Y.; Lu, S.; Zhang, H.; Varanasi, C.V.; Liu, J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 2012, 12, 4206–4211. [Google Scholar] [CrossRef]
- Futaba, D.N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994. [Google Scholar] [CrossRef]
- Pham, D.T.; Lee, T.H.; Luong, D.H.; Yao, F.; Ghosh, A.; Le, V.T.; Kim, T.H.; Li, B.; Chang, J.; Lee, Y.H. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 2015, 9, 2018–2027. [Google Scholar] [CrossRef] [PubMed]
- Froudakis, G. Hydrogen storage in nanotubes & nanostructures. Mater. Today 2011, 14, 324–328. [Google Scholar]
SWCNTs | MWCNTs |
---|---|
Single layer of graphene | Multiple layer of graphene |
Expensive | Cheaper |
Thermal conductivity in the range of 6000 W/m·K | Thermal conductivity in the range of 3000 W/m·K |
Semiconducting and metallic properties (excellent field emission capability) | Low physical properties |
Bulk synthesis is difficult | Easy to synthesis in bulk |
Easily twisted | Difficult to twist |
Catalyst needed for synthesis | Manufactured without catalyst |
Low purity | High purity |
Less accumulation body | Greater accumulation in body |
More defection during the functionalization | Less defection, but hard to improve |
Methods | Arc Discharge | Laser Vaporization | Chemical Vapor Deposition | Vapor Phase Growth |
---|---|---|---|---|
Condition | Voltage 25–60 V Current 50–100 A | Temperature 1200 °C and pressure 500 Torr | Temperature 550–1000 °C at atmospheric pressure | Supplying reaction gas and organometallic catalyst in the reactor |
Yield | 30–90% | ~70% | 20–100% | - |
Carbon Source | Graphite | Graphite | Fossil-based hydrocarbon, botanical hydrocarbon | Hydrocarbon |
Advantage | Excellent crystallinity | High quality, high yield compared with arc discharge | Can be controlled | Could be produce in bulk |
Disadvantage | Difficult to obtain uniform length nanotube, contain a large amount of impurities | Difficult to maintenance, low production, expensive | Affected the temperature change and position, relatively crystallinity | - |
References | [36,37] | [18,23] | [21,22] | [34] |
Type of CNMs | Plant | Treatment | Effect | Reference |
---|---|---|---|---|
MWCNTs and oxidized MWCNTs (o-MWCNTs) | Brassica juncea (mustard) seeds | 23 × 10−3 and 46 × 10−3 mg/mL of MWCNTs for 5 and 10 days and 2.3 × 10−3 and 6.9 × 10−3 mg/mL of o-MWCNTs for 5 and 10 days, respectively | After 10 days, seedlings treated with low concentration of o-MWCNTs developed the highest shoot (4.2 cm) and root (5.8 cm) length. Seeds treated with a low concentration of MWCNTs also showed shoot about 1.5 times and root about two times longer than original seeds | [64] |
Fullerol and MWCNTs | Tomato seeds | 50 mg/L and exposure ranged from 0 to 60 min (0, 5, 10, 30, or 60 min) | When exposed for a short period of 5 min, the germination rate was higher than that of the control group and showed no harm to germination | [65] |
Single-walled carbon nanohorns (SWCNHs) | Barley, Corn, Rice, Soybean, Switchgrass, Tomato | 25, 50, and 100 μg/mL for 2 and 6 days | The highest germination rate was recorded for barley, corn, rice, and switchgrass seeds exposed to 100 μg/mL SWCNHs and the highest germination rate was observed at 25 μg/mL SWCNHs in tomato seeds | [66] |
MWCNTs | Broccoli | 10 mg/L MWCNTs, 100 mM NaCl, and 100 mM NaCl + 10 mg/L MWCNTs | The MWCNTs-treated plants had positive effects on growth compared with the control and NaCl alone application | [67] |
MWCNTs | Barley, Soybean, Corn | 25, 50, and 100 μg/mL for 2 and 6 days | After six days, all seeds treated with MWCNT reached a germination rate of 100% compared with control seeds reaching a germination rate of 63% | [68] |
MWCNTs | Tomato plants | 50 and 200 μg/mL | The CNT-treated tomato plants produced twice as many flowers as the control plants | [69] |
CNTs | Rice | 50, 100, and 150 μg/mL | CNTs at appropriate concentrations (~100 μg/mL) promoted rice seed germination and root growth | [70] |
SWCNTs and functionalized SWCNTs | Cucumber, Onion | 28, 160, 900, and 5000 mg/L for 2 and 3 days | Non-functionalized CNTs enhanced root elongation in onion and cucumber, the effects were more pronounced at 24 h than at 48 h | [71] |
SWCNTs (non-functionalized, OH-functionalized, or surfactant stabilized) | Corn | 0, 10, and 100 mg/kg | Root length was significantly higher in plants exposed to non-functional SWNT 100 mg/kg and plant root uptake also followed the trend of non-functionalized > surfactant stabilized > OH-functionalized | [74] |
CNTs | Analyte | Sample | CNTs Amount (mg) | Recovery (%) | Reference |
---|---|---|---|---|---|
MWCNTs | Disulfoton sulfoxide, ethoprophos, disulfoton, terbufos sulfone, cadusafos, dimethoate, terbufos, chlorpyrifos-methyl, fenitrothion, malaoxon, pirimiphosmethyl, malathion, chlorpyrifos, disulfoton sulfone, and fensulfothion | Water (run-off, mineral, and tap water) | 130 | 67–107 | [94] |
GO–MCNTs-diethylenetriamine | Cr(III), Fe(III), Pb(II), and Mn(II) ions | Wastewater | 30 | 95 | [95] |
MWCNTs | Organophosphate | Garlic | 1.2 | 97–104 | [97] |
MWCNTs | 4-Chlorophenol, 3-chlorophenol, dichlorophenol, trichlorophenol, and pentachlorophenol | River water | 300 | 93–117 | [98] |
MWCNTs | Tolclofos-methyl, fenitrothin, malathion, phorate, diazinon, isocarbophos, and quinalphos phenamiphos | Peanut oil | 100 | 86–115 | [99] |
MWCNTs | Ethoprophos, diazinon, fenitrothion, malathion, and phosmet | Agricultural soil, forestal soil, and ornamental soil | 100 | 54–91 | [101] |
CNTs | Analyte | Sample | CNTs Amount (mg) | Recovery (%) | Reference |
---|---|---|---|---|---|
MWCNTs | Polybrominated diphenyl ethers (PBDEs) | River water, waste water, milk | 20 mg | 90–119 | [102] |
SWCNTs | Ethoprophos, terbufos, thiometon, tefluthrin, iprobenfos, vinclozolin, octachlorodipropyl ether, isofenphos, phenthoate, chlorfenapyr, propiconazol, Ethyl-p-nitrophenylthionobenzenephosphonate (EPN), and λ-cyhalothrin | Teas (green tea, oolong tea, white tea, and flower tea) | - | 75–118 | [103] |
SWCNTs | Hexachlorcyclohexan, dichlorodiphenyldichloroethylene, dichlorodiphenyldichloroethane, and dichlorodiphenyltrichloroethane | Lake water | 2 g | 88–111 | [104] |
CNTs–silicon dioxide | Diazinon, fenthion, parathion, and chlorpyrifos | River water and agricultural wastewater, pear, grape, and eggplant | 50 mg | 79–99 | [105] |
CNMs | Method | Current Density | Initial Discharge Capacity (mA·h/g) | Cycles | Residual Reversible Capacity (mA·h/g) | Reference |
---|---|---|---|---|---|---|
CNTs–SnSb0.5 | CVD | 50 mA/g | 549 | 30 | 369 | [111] |
CNTs–LiCoO2 | CVD | 0.2 C | 118 | 20 | 118 | [112] |
CNTs | arc discharge | 2 C | 300 | 300 | 255 | [114] |
MWCNTs | arc discharge | 0.2 mA cm−2 | 117 | 30 | 113 | [115] |
Short CNTs | CVD | 0.8 mA cm−2 | 491 | 30 | 170 | [119] |
Fe2O3/CNT–graphene foam | CVD | 200 mA/g | 1190 | 10 | 900 | [122] |
CNTs–cobalt oxide | 0.1 C | 1250 | 100 | 530 | [125] | |
Zn2SnO4/CNT | 100 mA/g | 1925.4 | 30 | 703.8 | [126] |
Applications | Desirable Nanomaterials Properties | Type of CNMs | Efficiency of the CNMs | Reference |
---|---|---|---|---|
Catalysts | Higher catalyst loads and stability, stronger metal–support interactions, high dispersion, high stability and activity, low cost | Ruthenium/MWCNT-COOH-Na2CO3 | 98.3% and 70.3% aniline and total organic carbon (TOC) removals | [128] |
Ruthenium/MWCNT-COOH | 89.9% and 53.7% aniline and TOC removals | [128] | ||
Mass Transfer | Facilitate contaminant mass transfer, large surface areas, high electrochemical efficiency, degrade organics with much higher current Efficiency and lower energy consumption | CNTs | The efficiency was 340–519% higher than the conventional reactor, and the energy consumption was only 16.5–22.3% of the conventional reactor | [131] |
Adsorption | Large specific surface areas, high chemical and thermal stabilities, high aspect ratios, exceptional mechanical strength, diverse contaminant–CNT interactions | SWCNTs, MWCNTs | The maximum zinc adsorption capacities of SWCNTs and MWCNTs were 43.66 and 32.68 mg/g, respectively, in the initial zinc ion concentration range (10–80 mg/L) | [134] |
Flocculation | Exceptional adsorption capabilities and efficiencies, larger surface area, affinity towards target compounds | CNTs | Demonstrated the ability to successfully coagulate colloidal particles in the brewery wastewater | [135] |
Electrode | Effective compound adsorption and oxidation, high energy efficiency, fast reaction rate, electrochemical oxidation | Ti/SnO2-Sb-CNT electrode | 80.12% and 46.01% COD and TOC removals | [136] |
Type of Electrode | MFCs | Type of MFCs | Effect | Power Density (Max.) mW/m | Reference | |
---|---|---|---|---|---|---|
Anode | Cathode | |||||
Graphite fiber | Carbon nanotube/Pt | Effluent from an air-cathode MFC | Single chamber MFCs | The cathode had a maximum power density of about two times higher than that of the carbon cloth cathode | 329 | [144] |
Carbon paper | CNTs/Poly-pyrrole | Anaerobic digester sludge collected from Indah Water Konsortium treated Palm oil mill effluent (POME) | Two cubic shaped chambers | COD removal of the system using CNT/PPy was 96% | 113.5 | [145] |
Carbon cloth | N-CNTs on carbon cloth | Acetate-laden synthetic wastewater | Air-cathode cylindrical-shaped MFCs, dual chamber | The maximum power density was about 9% higher than that of Pt-carbon on carbon cloth | 135 | [147] |
Carbon paper | CNTs/Pt | Palm oil mill effluent (POME- Selangor, Malaysia) sludge | Two cylindrical H-shaped chambers | The composite electrode increased the power output of MFC by 8.7~32% compared with Pt electrode | 169.7 | [149] |
Carbon paper | Chemically activated carbon nanofibers | Palm oil mill effluent (POME) anaerobic (Selangor, Malaysia) sludge | Two cylindrical and H-shaped chambers | COD removal was approximately 82.3% and could generate up to 3.17 times more power than carbon paper | 61.3 | [150] |
Carbon fiber | Nitrogen-doped CNTs (N-CNTs) | 20% domestic wastewater collected from a municipal wastewater treatment plant of Shanghai, China | Air-cathode single chamber MFCs | The power density drop rate was low, so electricity can be produced more permanently than the platinum catalyst | 1600 ± 50 | [151] |
MWCNT/ rGO-biofilm | carbon fiber brush | S. putrefaciens CN32 cell suspension was inoculated on bacteria | H-type dual-chamber | Composite electrodes provide higher maximum power density than individual MWCNTs and rGO | 789 | [152] |
Vertically Aligned CNTs | Cr/Au film | Acetate-fed microbial electrolytic cells (MEC) with Geobacter-enriched bacterial community from anaerobic digestion sludge Dual chamber MFCs; anode and cathode chambers | 61.3% of Coulombic efficiency | 270 | [153] | |
Randomly Aligned CNTs | Cr/Au film | 73% of Coulombic efficiency | 540 | |||
Spin/spray layer-by-layer CNTs | Cr/Au film | 73% of Coulombic efficiency | 540 | |||
CNTs/polyaniline (PANI) | Pt | Bacteria | E. coli-based MFCs | Composite electrodes containing 20 wt.% CNTs provide high discharge performance and high power output | 42 | [154] |
CNTs | CNTs/Pt | Bacteria | Air-cathode MFCs | COD removal was 95% and the maximum coulombic efficiency was 67% | 65 | [155] |
rGO-CNT sponges | - | Anaerobic sludge | Aerobic chamber and anoxic chamber | Produced higher durability | Max. current density of 335 A m−3 | [156] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, D.K.; Kim, H.-B.; Dutta, S.D.; Ganguly, K.; Lim, K.-T. Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials 2020, 13, 1679. https://doi.org/10.3390/ma13071679
Patel DK, Kim H-B, Dutta SD, Ganguly K, Lim K-T. Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials. 2020; 13(7):1679. https://doi.org/10.3390/ma13071679
Chicago/Turabian StylePatel, Dinesh K., Hye-Been Kim, Sayan Deb Dutta, Keya Ganguly, and Ki-Taek Lim. 2020. "Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications" Materials 13, no. 7: 1679. https://doi.org/10.3390/ma13071679
APA StylePatel, D. K., Kim, H. -B., Dutta, S. D., Ganguly, K., & Lim, K. -T. (2020). Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials, 13(7), 1679. https://doi.org/10.3390/ma13071679