Microstructures and Phases of Ytterbium Silicate Coatings Prepared by Plasma Spray-Physical Vapor Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Spraying
2.2. Characterization
3. Results and Discussion
3.1. Microstructures and Compositions of As-Sprayed Coatings
3.2. Microstructure and Composition of Annealed Coatings
4. Conclusions
- (1)
- An ytterbium silicate coating with columnar structure based on vapor deposition could be prepared by high net power (65 kW), whereas a coating with layered structure could be prepared by low net power (40 kW) based on liquid-phase deposition. The two as-sprayed coatings were mainly composed of amorphous phase.
- (2)
- Crystallization of the as-sprayed coatings was completed when the coatings were annealed at 1300 °C for 20 h. The coating sprayed at 65 kW was mainly composed of YbDS and also contained a small amount of YbMS phase and SiO2 phase. In contrast, the coating sprayed at 40 kW basically consisted of YbMS. Besides, a small amount of YbDS phase and Yb2O3 phase were present in the coating.
- (3)
- The calculation results by FactSage software indicate that YbMS powder can be decomposed into single gaseous Yb atoms during the PS-PVD process. Because of low vacuum, Yb gaseous atoms in high-temperature and high-speed gas flow are more difficult to solidify, resulting in a low atomic ratio of Yb/Si in the PS-PVD coatings compared to that of APS coatings.
Author Contributions
Funding
Conflicts of Interest
References
- Belmonte, M. Advanced ceramic materials for high temperature applications. Adv. Eng. Mater. 2006, 8, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Padture, N.P. Advanced structural ceramics in aerospace propulsion. Nature Mater. 2016, 15, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, L.; Liu, Q.; Cheng, L.; Wang, Y. Structure design and fabrication of environmental barrier coatings for crack resistance. J. Eur. Ceram. Soc. 2014, 34, 2005–2012. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, X.; Xu, F.; Li, K. Rare earth silicate environmental barrier coatings: Present status and prospective. Ceram. Int. 2017, 43, 5847–5855. [Google Scholar] [CrossRef]
- Richards, B.T.; Wadley, H.N.G. Plasma spray deposition of tri-layer environmental barrier coatings. J. Eur. Ceram. Soc. 2014, 34, 3069–3083. [Google Scholar] [CrossRef]
- Richards, B.T.; Young, K.A.; de Francqueville, F.; Sehr, S.; Begley, M.R.; Wadley, H.N.G. Response of ytterbium disilicate–silicon environmental barrier coatings to thermal cycling in water vapor. Acta Mater. 2016, 106, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Richards, B.T.; Zhao, H.; Wadley, H.N.G. Structure, composition, and defect control during plasma spray deposition of ytterbium silicate coatings. J. Mater. Sci. 2015, 50, 7939–7957. [Google Scholar] [CrossRef]
- Nasiri, N.A.; Patra, N.; Horlait, D.; Jayaseelan, D.D.; Lee, W.E.; Smialek, J. Thermal properties of rare-earth monosilicates for EBC on Si-based ceramic composites. J. Am. Ceram. Soc. 2016, 99, 589–596. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Y.; Chen, Y.X. Synthesis of single-phase β-Yb2Si2O7 and properties of its sintered bulk. Int. J. Appl. Ceram. Technol. 2015, 12, 1140–1147. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J. First-principles investigation on the corrosion resistance of rare earth disilicates in water vapor. J. Eur. Ceram. Soc. 2009, 29, 2163–2167. [Google Scholar] [CrossRef]
- Lu, M.; Xiang, H.M.; Feng, Z.H.; Wang, X.Y.; Zhou, Y.C.; Smialek, J. Mechanical and thermal properties of Yb2SiO5: A promising material for T/EBCs applications. J. Am. Ceram. Soc. 2016, 99, 1404–1411. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Tian, Z.; Wang, J.; Wang, J. Theoretical exploration of the abnormal trend in lattice thermal conductivity for monosilicates RE2SiO5 (RE = Dy, Ho, Er, Tm, Yb and Lu). J. Eur. Ceram. Soc. 2018, 38, 3539–3546. [Google Scholar] [CrossRef]
- Tian, Z.; Zheng, L.; Wang, J.; Wan, P.; Li, J.; Wang, J. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. J. Eur. Ceram. Soc. 2016, 36, 189–202. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, L.; Wang, J.; Wu, Z.; Lv, X.; Wang, J. Material-genome perspective towards tunable thermal expansion of rare-earth di-silicates. J. Eur. Ceram. Soc. 2018, 38, 3547–3554. [Google Scholar] [CrossRef]
- Lee, K.N.; Fox, D.S.; Bansal, N.P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 2005, 25, 1705–1715. [Google Scholar] [CrossRef]
- Zhong, X.; Niu, Y.; Li, H.; Zhou, H.; Dong, S.; Zheng, X.; Ding, C.; Sun, J. Thermal shock resistance of tri-layer Yb2SiO5/Yb2Si2O7/Si coating for SiC and SiC-matrix composites. J. Am. Ceram. Soc. 2018, 101, 4743–4752. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, W.; Wei, L.; He, W.; Guo, H. Mechanical properties and thermal conductivity of ytterbium-silicate-mullite composites. Materials 2020, 13, 671–681. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, J. Preparation and molten salt corrosion research of composite environmental barrier coatings of Lu2Si2O7 and Lu2SiO5. Mater. Res. Innov. 2014, 18, S4–S958. [Google Scholar] [CrossRef]
- Zhao, H.; Richards, B.T.; Levi, C.G.; Wadley, H.N.G. Molten silicate reactions with plasma sprayed ytterbium silicate coatings. Surf. Coat. Technol. 2016, 288, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Mauer, G.; Hospach, A.; Vassen, R. Process development and coating characteristics of plasma spray-PVD. Surf. Coat. Technol. 2013, 220, 219–224. [Google Scholar] [CrossRef]
- Goral, M.; Kotowski, S.; Sieniawski, J. The technology of plasma spray physical vapour deposition. High. Temp. Mater. Process. 2013, 32, 219–224. [Google Scholar]
- Gao, L.; Wei, L.; Guo, H.; Gong, S.; Xu, H. Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition. Ceram. Int. 2016, 142, 5530–5536. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, L.; Guo, H.; Xu, H. Microstructures and deposition mechanisms of quasi-columnar structured yttria-stabilized zirconia coatings by plasma spray physical vapor deposition. Ceram. Int. 2017, 43, 12920–12929. [Google Scholar] [CrossRef]
- Vautherin, B.; Planche, M.P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G. Vapors and droplets mixture deposition of metallic coatings by very low pressure plasma spraying. J. Therm. Spray Technol. 2014, 23, 596–608. [Google Scholar] [CrossRef]
- Golden, R.A.; Opila, E.J. A method for assessing the volatility of oxides in high-temperature high-velocity water vapor. J. Eur. Ceram. Soc. 2016, 36, 1135–1147. [Google Scholar] [CrossRef]
- Zhong, X. Microstucture and Properties of Ytterbium Silicates Coating Deposited by Atmospheric Plasma Spray. Ph.D. Thesis, Shanghai University, Shanghai, China, 2018. [Google Scholar]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. J. Appl. Crystallogr. 1974, 7, 526–531. [Google Scholar] [CrossRef]
- Bondar, I.A. Rare-earth silicates. Ceram. Int. 1982, 8, 83–89. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, Q.; Li, J.; Guo, H.; Xu, H. Microstructure and high-temperature oxidation behavior of plasma-sprayed Si/Yb2SiO5 environmental barrier coatings. Chin. J. Aeronaut. 2018, 32, 1994–1999. [Google Scholar] [CrossRef]
Melting Point | Coefficient of Thermal Conductivity | Coefficients of Thermal Expansion | Elastic Modulus | Hardness | |
---|---|---|---|---|---|
(°C) | (W/m K) | (×10−6 K−1) | (GPa) | (GPa) | |
Yb2SiO5 | 1950 | 2.3–1.5 (300–1400 K) | 7–8 | 149 | 6.4 ± 0.1 |
Yb2Si2O7 | 1850 | 4.6–2.0 (300–1400 K) | 3.7–4.5 (800–1600 K) | 168 | 7.3 ± 0.2 |
Parameter | Si | Mullite |
---|---|---|
Net power/kW | 44.4 | 33.1 |
Spray distance/mm | 100 | 110 |
Ar/L/h | 2000 | 2269 |
H2/L/h | 80 | 567 |
Current/A | 600 | 650 |
Feed rate/g/min | 9.5 | 12.0 |
Substrate temperature/°C | 1000 | 1100 |
Parameter | Sample A | Sample B |
---|---|---|
Net power/kW | 65 | 40 |
Spray distance/mm | 1000 | 1000 |
Ar/L/min | 30 | 30 |
He/L/min | 60 | 60 |
Powder feeding rate/g/min | 10 | 10 |
Powder carrier gas/L/min | 10 | 2 |
Vacuum pressure/mbar | 2 | 10 |
Deposition time/min | 5 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Guo, Q.; Wei, L.; He, W.; Guo, H. Microstructures and Phases of Ytterbium Silicate Coatings Prepared by Plasma Spray-Physical Vapor Deposition. Materials 2020, 13, 1721. https://doi.org/10.3390/ma13071721
Xiao J, Guo Q, Wei L, He W, Guo H. Microstructures and Phases of Ytterbium Silicate Coatings Prepared by Plasma Spray-Physical Vapor Deposition. Materials. 2020; 13(7):1721. https://doi.org/10.3390/ma13071721
Chicago/Turabian StyleXiao, Jie, Qian Guo, Liangliang Wei, Wenting He, and Hongbo Guo. 2020. "Microstructures and Phases of Ytterbium Silicate Coatings Prepared by Plasma Spray-Physical Vapor Deposition" Materials 13, no. 7: 1721. https://doi.org/10.3390/ma13071721
APA StyleXiao, J., Guo, Q., Wei, L., He, W., & Guo, H. (2020). Microstructures and Phases of Ytterbium Silicate Coatings Prepared by Plasma Spray-Physical Vapor Deposition. Materials, 13(7), 1721. https://doi.org/10.3390/ma13071721