Electrochemical and Biological Performance of Biodegradable Polymer Coatings on Ti6Al7Nb Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Roughness
2.2. Microscopic Observations
2.3. Wettability Test
2.4. Potentiodynamic Test
2.5. Ion Release Test
2.6. Biological Test
2.7. Statistical Analysis
3. Results and Discussion
3.1. Surface Roughness
3.2. Microscopic Observations Results
3.3. Wettability Test
3.4. Potentiodynamic Tests Results
3.5. Ion Release Test Results
3.6. Biological Test Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dobrzynski, P.; Li, S.M.; Kasperczyk, J.; Bero, M.; Gasc, F.; Vert, M. Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and epsilon-caprolactone. Part 1. Synthesis and characterization. Biomacromolecules 2005, 6, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Kasperczyk, J.; Hu, Y.; Jaworska, J.; Dobrzyński, P.; Wei, J.; Li, S. Comparative study of the hydrolytic degradation of glycolide/l-actide/ε-caprolactone terpolymers initiated by zirconium (IV) acetylacetonate or stannous octoate. J. Appl. Polym. Sci. 2008, 107, 3258–3266. [Google Scholar] [CrossRef]
- Kasperczyk, J.; Li, S.; Jaworska, J.; Dobrzyński, P.; Vert, M. Degradation of copolymers obtained by ring-opening polymerization of glycolide and ε-caprolactone: A high resolution NMR and ESI-MS study. Polym. Degrad. Stabil. 2008, 93, 990–999. [Google Scholar] [CrossRef]
- Maurus, P.B.; Kaeding, C.C. Bioabsorbable implant material review. Oper. Tech. Sport Med. 2004, 12, 158–160. [Google Scholar] [CrossRef]
- Ma, X.; Xia, Y.; Xu, H.; Lei, K.; Lang, M. Preparation, degradation and in vitro release of ciprofloxacin-eluting ureteral stents for potential antibacterial application. Mater. Sci. Eng. C 2016, 66, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, J.; Szewczenko, J.; Kajzer, W. Surface modification of implants for bone surgery. Arch. Metall. Mater. 2015, 60, 13–19. [Google Scholar] [CrossRef]
- Kajzer, A.; Kajzer, W.; Gołombek, K.; Knol, M.; Dzielicki, J.; Walke, W. Corrosion resistance, EIS and wettability of the implants made of 316 LVM steel used in chest deformation treatment. Arch. Metall. Mater. 2016, 61, 767–770. [Google Scholar] [CrossRef] [Green Version]
- Krauze, A.; Ziębowicz, A.; Marciniak, J. Corrosion resistance of intramedullary nails used in elastic osteosynthesis of children. J. Mater. Process. Tech. 2005, 162–163, 209–214. [Google Scholar] [CrossRef]
- Makuch, K.; Koczorowski, R. Biokompatybilność tytanu oraz jego stopów wykorzystywanych w stomatologii. Dent. Med. Probl. 2010, 47, 81–88. [Google Scholar]
- Rusinek, B.; Stobiecka, A.; Obtułowicz, K. Alergia na tytan i implant. Alergol. Immunologia. 2008, 5, 5–7. [Google Scholar]
- Zhang, Y.; Xiu, P.; Jia, Z.; Zhang, T.; Yin, C.; Cheng, Y.; Cai, H.; Zhang, K.; Song, C.; Leng, H.; et al. Effect of vanadium released from micro-arc oxidized porous Ti6Al4V on biocompatibility in orthopedic applications. Colloids Surf. B 2018, 169, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.-H.; Johnson, C.A., Jr.; Wooley, J.R.; Murata, H.; Gamble, L.J.; Ishihara, K.; Wagner, W.R. Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids Surf. B 2010, 79, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Roessler, S.; Zimmermann, R.; Scharnweber, D.; Werner, C.; Worch, H. Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurements. Colloids Surf. B 2002, 216, 387–395. [Google Scholar] [CrossRef]
- Basiaga, M.; Paszenda, Z.; Walke, W.; Karasiński, P.; Marciniak, J. Electrochemical Impedance Spectroscopy and corrosion resistance of SiO2 coated cpTi and Ti-6Al-7Nb alloy. In Information Technologies in Biomedicine, Advances in intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2014; Volume 284, pp. 411–420. [Google Scholar]
- Basiaga, M.; Walke, W.; Paszenda, Z.; Kajzer, A. The effect of EO and steam sterilization on the mechanical and electrochemical properties of titanium Grade 4. Mater. Technol. 2016, 50, 153–158. [Google Scholar] [CrossRef]
- Kiel-Jamrozik, M.; Szewczenko, J.; Basiaga, M.; Nowińska, K. Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy. Acta Bioeng. Biomech. 2015, 1, 31–37. [Google Scholar]
- Szewczenko, J.; Nowinska, K.; Marciniak, J. Influence of initial surface treatment on corrosion resistance of Ti6Al4V ELI alloy after anodizing. Prz. Elektrotechniczn. 2011, 87, 228–231. [Google Scholar]
- Park, M.; Lee, J.; Park Ch Lee, S.; Seok, H.; Choy, Y. Polycaprolactone coating with varying thyicknesses for controlled corrosion of magnesium. J. Coat. Technol. Res. 2013, 10, 695–706. [Google Scholar] [CrossRef]
- Xu, W.; Yagoshi, K.; Koga, Y.; Sasaki, M.; Niidome, T. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance. Colloids Surf. B 2018, 163, 100–106. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, Z.; Liu, W.; Zhao, Y.; Zhao, Y.; Huang, T.; Li, X.; Fang, J. Preparation and In-vitro Degradation Behavior of Poly(L-lactide-co-glycolide-co-ε-caprolactone) Terpolymer. J. Macromol. Sci. B 2019, 58, 568–577. [Google Scholar] [CrossRef]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef] [Green Version]
- Dash, T.K.; Konkimalla, V.B. Poly-ϵ-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release 2012, 158, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Ávila, M.; Saenz, G.; Salazar, J. Crystallization of PLA-based Materials. In Poly(Lactic Acid) Science and Technology: Processing, Properties, Additives and Applications; Jiménez, A., Peltzer, M., Ruseckaite, R., Eds.; The Royal Society of Chemistry: London, UK, 2015; 66p. [Google Scholar]
- Liu, H.; Wang, S.D.; Qi, N. Controllable structure, poperties and degradation of the electrospun PLGA/PLA-Blended nanofibrous scaffolds. J. Appl. Polym. Sci. 2012, 125, E468–E476. [Google Scholar] [CrossRef]
- Jelonek, K.; Kasperczyk, J. Polyesters and polyestercarbonates for controlled drug delivery. Polimery 2013, 58, 654–662. [Google Scholar] [CrossRef]
- Cieślik, M.; Engvall, K.; Pan, J.; Kotarba, A. Silane-parylene coating for improving corrosion resistance of stainless steel 316L implant material. Corros. Sci. 2011, 53, 296–301. [Google Scholar] [CrossRef]
- Cieślik, M.; Kot, M.; Reczyński, W.; Engvall, K.; Rakowski, W.; Kotarba, A. Parylane coatings on stainless steel 316L Surface for medical applications—Mechanical and prottective properties. Mater. Sci. Eng. C 2012, 32, 31–35. [Google Scholar] [CrossRef]
- Cieślik, M.; Zimowski, S.; Gołda, M.; Engvall, K.; Pan, J.; Rakowski, W.; Kotarba, A. Engineering of bone fixation metal implants biointerface—Application of parylene C as versatile protective coating. Mater. Sci. Eng. C 2012, 32, 2431–2435. [Google Scholar] [CrossRef]
- Kazek-Kęsik, A.; Jaworska, J.; Krok-Borkowicz, M.; Gołda-Cępa, M.; Pastusiak, M.; Brzychczy-Włoch, M.; Pamuła, E.; Kotarba, A.; Simka, W. Hybrid oxide-polymer formed on Ti-Mo alloy surface enhancing antibacterial and osseointegration functions. Surf. Coat. Tech. 2016, 302, 158–165. [Google Scholar] [CrossRef]
- Orchel, A.; Jelonek, K.; Kasperczyk, J.; Dobrzyński, P.; Marcinkowski, A.; Pamuła, E.; Orchel, J.; Bielecki, I.; Kulczycka, A. The influence of chai microstructure of biodegradable copolyesters obtained with low-toxic zirconium initiator to in vitro biocompatibility. BioMed Res. Int. 2013, 2013, 176946. [Google Scholar] [CrossRef]
- Vogeling, H.; Duse, L.; Seitz, B.S.; Plenagl, N.; Wojcik, M.; Pinnapireddy, S.R.; Bakowsky, U. Multilayer bacteriostatic coating for surface modified titanium implant. Phys. Status Solidi A 2018, 215, 1700844. [Google Scholar] [CrossRef]
- Zhang, G.-F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.-L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem. 2018, 146, 599–612. [Google Scholar] [CrossRef]
- Jaworska, J.; Jelonek, K.; Jaworska-Kik, M.; Musiał-Kulik, M.; Marcinkowski, A.; Szewczenko, J.; Kajzer, W.; Pastusiak, M.; Kasperczyk, J. Development of antibacterial, ciprofloxacin-eluting biodegradable coatings on Ti6Al7Nb implants to prevent peri-implant infections. J. Biomed. Mater. Res. Part A 2020, 108, 1006–1015. [Google Scholar] [CrossRef]
- Standard ISO 5832-11:2014. Implants for Surgery—Metallic Materials—Part 11: Wrought Titanium 6-Aluminium 7-Niobium Alloy; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- Zini, E.; Scandola, M.; Dobrzynski, P.; Kasperczyk, J.; Bero, M. Shape memory behavior of novel (L-Lactide- glycol ide-trimethylene carbonate) terpolymers. Biomacromolecules 2007, 8, 3661–3667. [Google Scholar] [CrossRef] [PubMed]
- Standard PN EN ISO 10993-15:2009. Biological Evaluation Of Medical Devices—Part 15: Identification And Quantification Of Degradation Products From Metals And Alloys; Polish Committee for Standardization: Warsaw, Poland, 2009. [Google Scholar]
- Standard ISO 10993-5:2009. Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Kazek-Kęsik, A.; Nosol, A.; Płonka, J.; Śmiga-Matuszowicz, M.; Gołda-Cępa, M.; Krok-Borkowicz, M.; Brzychczy-Włoch, M.; Pamuła, E.; Simka, W. PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications. Mater. Sci. Eng. C 2019, 94, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Szewczenko, J.; Kajzer, W.; Grygiel-Pradelok, M.; Jaworska, J.; Jelonek, K.; Gawliczek, M.; Libera, M.; Marcinkowski, A.; Kasperczyk, J. Corrosion resistance of PLGA-coated biomaterials. Acta Bioeng. Biomech. 2017, 19, 173–179. [Google Scholar] [PubMed]
- Li, S.; Vert, G.M. Structure-property relationship in the case of the degradation of massive poly(α-hydroxyacids) in aqueous media – Part 2 Degradation of lactide-glycolide copolymers PLA37.5GA25 and PLA75GA25. J. Mater. Sci.-Mater. Med. 1990, 1, 131–139. [Google Scholar] [CrossRef]
- Li, S.; Vert, G.M. Structure-property relationship in the case of the degradation of massive poly(α-hydroxyacids) in aqueous media – Part 1: Poly(dl-lactic acid). J. Mater. Sci.-Mater. Med. 1990, 1, 123–130. [Google Scholar] [CrossRef]
- Saad, B.; Suter, U.W. Biodegradable polymeric materials. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; 551p. [Google Scholar]
- Huang, H.-H.; Wu, C.-P.; Sun, Y.-S.; Lee, T.-H. Improvements in the corrosion resistance on biocompatibility of biomedical Ti6Al7Nb alloy using an electrochemical anodization treatment. Thin Solid Films 2013, 528, 157–162. [Google Scholar] [CrossRef]
- Stoica, E.-D.; Fedorov, F.; Nicolae, M.; Uhlemann, M.; Gebert, A.; Shultz, L. Ti6Al7Nb surface modification by anodization in electrolytes containing HF. Sci. Bull.-Univ.Politeh. Buchar. Ser. B 2012, 74, 277–288. [Google Scholar]
- de Assi, S.L.; Wolynec, S.; Costa, I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim. Acta 2006, 51, 1815–1819. [Google Scholar] [CrossRef]
- Lavos-Valereto, I.C.; Wolynec, S.; Ramires, I.; Guastaldi, A.C.; Costa, I. Electrochemica impedance spectroscopy, characterization of passive film formed on implant Ti6Al7Nb alloy in Hank’s solution. J. Mater. Sci.-Mater. Med. 2004, 15, 55–59. [Google Scholar] [CrossRef]
- Kajzer, W.; Jaworska, J.; Jelonek, K.; Szewczenko, J.; Kajzer, A.; Nowińska, K.; Hercog, A.; Kaczmarek, M.; Kasperczyk, J. Corrosion resistance of Ti6Al4V alloy coated with caprolactone-based biodegradable polymeric coatings. Eksploat. Niezawodn. 2018, 20, 130–138. [Google Scholar] [CrossRef]
- Szewczenko, J.; Kajzer, W.; Kajzer, A.; Basiaga, M.; Kaczmarek, M.; Major, R.; Simka, W.; Jaworska, J.; Jelonek, K.; Karpeta-Jarząbek, P.; et al. Adhesion of poly(lactide-glycolide) coating (PLGA) on the Ti6Al7Nb alloy Substrate. In Proceedings of the International Conference on Information Technolgy in Biomedicine, Kamień Śląski, Poland, 18–20 June 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 578–589. [Google Scholar]
- Li, W.J.; Zhou, J.; Xu, Y.Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep. 2015, 3, 617–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricker, S.P. A role for in-vitro cytotoxicity testing in the selection and development of metal-based pharmaceutical and materials products. Toxicol. in Vitro 1994, 8, 879–881. [Google Scholar] [CrossRef]
- Srivastava, G.K.; Alonso-Alonso, M.L.; Fernandez-Bueno, I.; Garcia-Gutierrez, M.T.; Rull, F.; Medina, J.; Coco, R.M.; Pastor, J.C. Comparison between direct contact and extract exposure methods for PFO cytotoxicity evaluation. Sci. Rep.-U. K. 2018, 8, 1425. [Google Scholar] [CrossRef] [PubMed]
The Type of Coating | Surface Roughness Sa, μm | ||||
---|---|---|---|---|---|
Number of Dips (d) | 0 months (m) NoE | SD | 3 Month (m) | SD | |
PLGA | 1 | 0.44 | 0.05 | 0.49 | 0.09 |
2 | 0.47 | 0.03 | 0.52 | 0.07 | |
3 | 0.45 | 0.02 | 0.38 | 0.07 | |
P(GCap) | 1 | 0.43 | 0.03 | 0.48 | 0.08 |
2 | 0.46 | 0.04 | 0.44 | 0.05 | |
3 | 0.39 | 0.06 | 0.4 | 0.06 | |
P(GCapL) | 1 | 0.44 | 0.02 | 0.48 | 0.07 |
2 | 0.39 | 0.08 | 0.62 | 0.06 | |
3 | 0.4 | 0.03 | 0.39 | 0.09 | |
Substrate | 0 | 0.47 | 0.02 | 0.46 | 0.03 |
Sample | Exposition Time, Month | No of Dips | Ecorr, mV | SD | Rp, MΩ ⋅cm2 | SD |
---|---|---|---|---|---|---|
Ti6Al7Nb | NoE | 0 | 161.9 | 61 | 0.84 | 0.05 |
1 | 108.7 | 114 | 0.76 | 0.02 | ||
2 | 78.55 | 48 | 0.91 | 0.03 | ||
3 | −214.1 | 5 | 1.51 | 0.2 | ||
Ti6Al7Nb and PLGA | NoE | 1 | 238.4 | 240 | 0.904 | 0.01 |
2 | 249.35 | 0.77 | 0.85 | 0.03 | ||
3 | 218.35 | 53 | 0.84 | 0.11 | ||
1 | 1 | 132.95 | 68 | 0.906 | 0.09 | |
2 | 195.3 | 6 | 0.859 | 0.15 | ||
3 | 166.2 | 39 | 0.98 | 0.05 | ||
2 | 1 | 167.2 | 3 | 0.98 | 0.05 | |
2 | 145.45 | 15 | 0.88 | 0.07 | ||
3 | 153.85 | 19 | 0.93 | 0.01 | ||
3 | 1 | 182.3 | 42 | 0.875 | 0.06 | |
2 | 238.8 | 13 | 0.783 | 0.04 | ||
3 | 223.35 | 38 | 0.879 | 0.01 | ||
Ti6Al7Nb and P(GCap) | NoE | 1 | 229.45 | 31 | 0.92 | 0.03 |
2 | 48.15 | 24 | 0.92 | 0.03 | ||
3 | 226.05 | 3 | 0.865 | 0.04 | ||
1 | 1 | −21.5 | 22 | 1.04 | 0.24 | |
2 | 83.7 | 97 | 1.01 | 0.37 | ||
3 | 47.4 | 34 | 0.955 | 0.09 | ||
2 | 1 | 85.1 | 91 | 1.22 | 0.04 | |
2 | 162.15 | 55 | 1.125 | 0.05 | ||
3 | 87.95 | 21 | 1.09 | 0.06 | ||
3 | 1 | 221 | 3 | 0.836 | 0.01 | |
2 | 236.3 | 5 | 0.879 | 0.03 | ||
3 | 86.65 | 23 | 0.789 | 0.02 | ||
Ti6Al7Nb and P(GCapL) | NoE | 1 | 285.3 | 12 | 0.868 | 0.04 |
2 | 275.9 | 7 | 0.818 | 0.01 | ||
3 | 272 | 4 | 0.851 | 0.01 | ||
1 | 1 | 158.9 | 4 | 0.969 | 0.02 | |
2 | 83.7 | 97 | 1.016 | 0.37 | ||
3 | 47.4 | 34 | 0.955 | 0.09 | ||
2 | 1 | 169.75 | 2 | 0.753 | 0.01 | |
2 | 91.65 | 38 | 0.835 | 0.05 | ||
3 | 116.6 | 33 | 0.766 | 0.04 | ||
3 | 1 | 85.6 | 78 | 0.894 | 0.03 | |
2 | 170.75 | 47 | 1.017 | 0.21 | ||
3 | 174.1 | 20 | 0.856 | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajzer, W.; Szewczenko, J.; Kajzer, A.; Basiaga, M.; Kaczmarek, M.; Antonowicz, M.; Jaworska, J.; Jelonek, K.; Orchel, A.; Nowińska, K.; et al. Electrochemical and Biological Performance of Biodegradable Polymer Coatings on Ti6Al7Nb Alloy. Materials 2020, 13, 1758. https://doi.org/10.3390/ma13071758
Kajzer W, Szewczenko J, Kajzer A, Basiaga M, Kaczmarek M, Antonowicz M, Jaworska J, Jelonek K, Orchel A, Nowińska K, et al. Electrochemical and Biological Performance of Biodegradable Polymer Coatings on Ti6Al7Nb Alloy. Materials. 2020; 13(7):1758. https://doi.org/10.3390/ma13071758
Chicago/Turabian StyleKajzer, Wojciech, Janusz Szewczenko, Anita Kajzer, Marcin Basiaga, Marcin Kaczmarek, Magdalena Antonowicz, Joanna Jaworska, Katarzyna Jelonek, Arkadiusz Orchel, Katarzyna Nowińska, and et al. 2020. "Electrochemical and Biological Performance of Biodegradable Polymer Coatings on Ti6Al7Nb Alloy" Materials 13, no. 7: 1758. https://doi.org/10.3390/ma13071758
APA StyleKajzer, W., Szewczenko, J., Kajzer, A., Basiaga, M., Kaczmarek, M., Antonowicz, M., Jaworska, J., Jelonek, K., Orchel, A., Nowińska, K., & Kasperczyk, J. (2020). Electrochemical and Biological Performance of Biodegradable Polymer Coatings on Ti6Al7Nb Alloy. Materials, 13(7), 1758. https://doi.org/10.3390/ma13071758