Stress Concentration Factors for Butt-Welded Plates Subjected to Tensile, Bending and Shearing Loads
Abstract
:1. Introduction
2. General Assumptions
- Joint material is linear elastic, isotropic and homogeneous
- Small deformations occur due to external loading
- Joint material is free from residual stresses, structural irregularities and imperfections
- Both plates are of the same thickness t and are co-linear
- Convex excess weld metal has a constant curvature, described by the radius R
- The weld is symmetrical (for Single-V joint) or double-symmetrical (for Double-V joint)
- Contour of the weldment is smooth, with a transition radius ρ > 0
- Weld toe curvature and the excess weld metal curvature join at the point A (Figure 1)
- SCF for tensile and bending loads is defined as σ1max/σt and σ1max/σb, respectively
- SCF for shearing load is defined as τmax/τs.
3. Numerical FEM Modelling and Some Numerical Results
3.1. Tensile and Bending Loading
3.2. Shearing Load
4. SCF Approximating Formulas
4.1. Singularity Effects at the Weld Toe
4.2. General Form of the SCF Formulas
4.3. Validation of Approximating Formulas
5. Discussion
5.1. Transformation of the Measurable Weld Parameters into Theoretical Ones
5.2. Comparison of the Present SCF Results with Other Solutions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
G | shear modulus |
H | height of the excess weld metal |
k | thermal conductivity |
Kt | stress concentration factor (SCF) |
Kttsym | stress concentration factor for tensile (axial) load, Double-V weld |
Kttasym | stress concentration factor for tensile (axial) load, Single-V weld |
Ktbsym | stress concentration factor for bending load, Double-V weld |
Ktbasym | stress concentration factor for bending load, Single-V weld |
Ktssym | stress concentration factor for shearing load, Double-V weld |
Ktsasym | stress concentration factor for shearing load, Single-V weld |
L | theoretical width of the butt weld |
n | stress field exponent for a sharp corner for tensile and bending load |
ns | stress field exponent for a sharp corner for shearing load |
q | magnitude of the heat flux |
qmax | magnitude of the maximum heat flux |
qnom | magnitude of the nominal heat flux at the right end of the body |
R | radius of the excess weld metal |
t | thickness of the main plate |
tsym | thickness of the main plate of a Double-V butt weld subjected to shear |
tasym | thickness of the main plate of a Single-V butt weld subjected to shear |
T | temperature |
|∇Τ| | magnitude of the temperature gradient |
|∇Τ|max | magnitude of the maximum temperature gradient |
|∇Τ|nom | magnitude of the nominal temperature gradient at the right end of the body |
w | measurable total width of the butt weld |
W | displacement component corresponding to anti-plane deformation in z direction |
x,y,z | Cartesian coordinates |
X = ρ/(ρ + L) | normalized weld toe radius parameter |
Y = L/(L + t) | normalized weld width parameter |
2α | total angle of the sharp corner |
θ | theoretical weld toe angle |
θ* | measurable weld toe angle |
λ | eigenvalue of the characteristic equation corresponding to normal load |
λs | eigenvalue of the characteristic equation corresponding to shearing load |
ρ | weld toe radius |
σt | nominal tensile (axial) stress |
σb | nominal bending stress |
σ1max | maximum principal stress at the weld toe due to tensile or bending load |
τ | shearing stress |
τs | nominal shearing stress corresponding to anti-plane deformation |
τmax | maximum shear stress at the weld toe due to shear stress longitudinal to the weld |
Ψ | potential function |
∂Ψ/∂n | partial derivative normal to the bonding contour |
Appendix A
References
- Monahan, C.C. Early Fatigue Crack Growth at Welds; WIT PRESS/Computational Mechanics Publications: Southampton, UK, 1995. [Google Scholar]
- Singh, P.J.; Achar, D.R.G.; Guha, B.; Nordberg, H. Influence of weld geometry and process on fatigue crack growth characteristics of AISI 304L cruciform joints containing lack of penetration defects. Sci. Technol. Weld. Join. 2002, 7, 306–312. [Google Scholar] [CrossRef]
- Tchoffo Ngoula, D.; Beier, H.T.H.; Vormwald, M. Fatigue crack growth in cruciform welded joints: Influence of residual stresses and of the weld toe geometry. Int. J. Fatigue 2017, 101, 253–262. [Google Scholar] [CrossRef]
- Nykänen, T.; Björk, T.; Laitinen, R. Fatigue strength prediction of ultra high strength steel butt-welded joints. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 469–482. [Google Scholar] [CrossRef]
- Zerbst, U.; Madia, M.; Schork, B. Fracture mechanics based determination of the fatigue strength of weldments. Procedia Struct. Integr. 2016, 1, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.Y.; Liu, S.H.; Lin, R.S.; Ju, S.H. Assessment of stress intensity factors for load-carrying fillet welded cruciform joints using a digital camera. Int. J. Fatigue 2008, 30, 1861–1872. [Google Scholar] [CrossRef]
- Stenberg, T.; Barsoum, Z.; Balawi, S.O.M. Comparison of local stress based concepts—Effects of low-and high cycle fatigue and weld quality. Eng. Fail. Anal. 2015, 57, 323–333. [Google Scholar] [CrossRef]
- Remes, H.; Varsta, P. Statistics of Weld Geometry for Laser-Hybrid Welded Joints and its Application within Notch Stress Approach. Weld World 2010, 54, R189–R207. [Google Scholar] [CrossRef]
- Dong, P. A structural stress definition and numerical implementation for fatigue analysis of welded joints. Int. J. Fatigue 2001, 23, 865–876. [Google Scholar] [CrossRef]
- Radaj, D.; Sonsino, C.M.; Fricke, W. Recent developments in local concepts of fatigue assessment of welded joints. Int. J. Fatigue 2009, 31, 2–11. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Glinka, G.; El-Zein, M.; Qian, J.; Formas, R. Stress analysis and fatigue of welded structures. Weld. World 2011, 55, 2–21. [Google Scholar] [CrossRef]
- Sonsino, C.M.; Fricke, W.F.; de Bruyne, F.; Hoppe, A.; Ahmadi, A.; Zhang, G. Notch stress concepts for the fatigue assessment of welded joints—Background and applications. Int. J. Fatigue 2012, 34, 2–16. [Google Scholar] [CrossRef]
- Fayard, J.L.; Bignonnet, A.; Dang Van, K. Fatigue design criteria for welded structures. Fatigue Fract. Eng. Mater. Struct. (FFEMS) 1996, 19, 723–729. [Google Scholar] [CrossRef]
- Lotsberg, I.; Sigurdsson, G. Hot Spot Stress S-N Curve for Fatigue Analysis of Plated Structures. J. Offshore Mech. Arct. Eng. 2006, 128, 330–336. [Google Scholar] [CrossRef]
- Niemi, E.; Fricke, W.; Maddox, S.J. Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components, 2nd ed.; Springer Singapore: Singapore, 2018. [Google Scholar]
- Park, W.; Miki, C. Fatigue assessment of large-size welded joints based on the effective notch stress approach. Int. J. Fatigue 2008, 30, 1556–1568. [Google Scholar] [CrossRef]
- Schijve, J. Fatigue predictions of welded joints and the effective notch stress concept. Int. J. Fatigue 2012, 45, 31–38. [Google Scholar] [CrossRef]
- Kranz, B.; Sonsino, C.M. Verification of FAT Values for the Application of the Notch Stress Concept with the Reference Radii Rref = 1.00 and 0.05 mm. Weld. World 2010, 54, R218–R224. [Google Scholar] [CrossRef]
- Taddesse, A.T.; Zhu, S.P.; Liao, D.; Keshtegar, B. Cyclic plastic zone-based notch analysis and damage evolution model forfatigue life prediction of metals. Mater. Des. 2020, 191, 108639. [Google Scholar] [CrossRef]
- Nykänen, T.; Björk, T. Assessment of fatigue strength of steel butt-welded joints in as-welded condition—Alternative approaches for curve fitting and mean stress effect analysis. Mar. Struct. 2015, 44, 288–310. [Google Scholar] [CrossRef]
- Sepe, R.; Wiebesiek, J.; Sonsino, C.M. Numerical and experimental validation of residual stresses of laser-welded joints and their influence on the fatigue behaviour. Fatigue Fract. Eng. Mater. Struct. 2019. [Google Scholar] [CrossRef]
- Livieri, P.; Lazzarin, P. Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values. Int. J. Fract. 2005, 133, 247–276. [Google Scholar] [CrossRef]
- Liao, D.; Correia, J.A.F.O.; De Jesus, A.M.P.; Berto, F. Recent advances on notch effects in metal fatigue: A review. Fatigue Fract. Eng. Mater. Struct. (FFEMS) 2020, 43, 637–659. [Google Scholar] [CrossRef]
- Singh, P.J.; Guha, B.; Achar, D.R.G. Fatigue life prediction using two stage model for AISI 304L cruciform joints, with different fillet geometry, failing at toe. Fatigue Fract. Eng. Mater. Struct. (FFEMS) 2003, 8, 69–75. [Google Scholar] [CrossRef]
- Young, J.Y.; Lawrence, F.V. Analytical and graphical aids for the fatigue design of weldments. Fatigue Fract. Eng. Mater. Struct. (FFEMS) 1985, 8, 223–241. [Google Scholar] [CrossRef]
- European Committee for Standardization (CES). EN 1993-1-9:2005 Eurocode 3: Design of Steel Structures—Part 1–9: Fatigue; CES: Brussels, Belgium, 2005. [Google Scholar]
- Hobbacher, A.F. The new IIW recommendations for fatigue assessment of welded joints and components—A comprehensive code recently updated. Int. J. Fatigue 2009, 31, 50–58. [Google Scholar] [CrossRef]
- Fricke, W. IIW Recommendations for the Fatigue Assessment of Welded Structures by Notch Stress Analysis; Woodhead Publishing: Sawston, Cambridge, UK, 2012; pp. 2–41. [Google Scholar]
- Fricke, W. IIW guideline for the assessment of weld root fatigue. Weld. World 2013, 57, 753–791. [Google Scholar] [CrossRef]
- International Standard Organization (ISO). EN ISO 9692-1:2013 Welding and Allied Processes—Types of Joint Preparation—Part 1: Manual Metal Arc Welding, Gas-Shielded Metal Arc Welding, Gas Welding, TIG Welding and Beam Welding of Steels; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- Peterson, R.E. Stress Concentration Design Factors, 2nd ed.; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Wilson, I.H.; White, D.J. Stress concentration factors for shoulder fillets and groves in plates. J. Eng. Mech. 1979, 8, 43–51. [Google Scholar]
- Noda, N.A.; Takase, Y.; Monda, K. Stress concentration factors for shoulder fillets in round and flat bars under various loads. Int. J. Fatigue 1997, 19, 75–84. [Google Scholar] [CrossRef]
- Abdul-Mihsein, M.J.; Fenner, R.T. Some boundary integral equation solutions for three dimensional stress concentration problems. J. Strain Anal. Eng. Des. 1983, 18, 207–215. [Google Scholar] [CrossRef]
- Hasebe, N.; Sugimoto, T.; Nakamura, T. Stress concentration of longitudinal shear problems. J. Eng. Mech. 1987, 113, 1358–1367. [Google Scholar] [CrossRef]
- Ushirokawa, O.; Nakayama, E. Stress concentration factor at welded joints. Ishikawajima–Harima Eng. Rev. 1983, 23, 351–355. [Google Scholar]
- Tsuji, I. Estimation of stress concentration factor at weld toe of non-load carrying fillet welded joints. Trans. West-Jpn. Soc. of Nav. Archit. 1990, 80, 241–251. [Google Scholar]
- Iida, K.; Uemura, T. Stress concentration factor formulas widely used in Japan. Fatigue Fract. Eng. Mater. Struct. 1996, 19, 779–786. [Google Scholar] [CrossRef]
- Brennan, F.P.; Peletiesa, P.; Hellierb, A.K. Predicting weld toe stress concentration factors for T and skewed T-joint plate connections. Int. J. Fatigue 2000, 22, 573–584. [Google Scholar] [CrossRef]
- Lotsberg, I. Stress concentration factors at welds in pipelines and tanks subjected to internal pressure and axial force. Mar. Struct. 2008, 21, 138–159. [Google Scholar] [CrossRef]
- Lotsberg, I. Stress concentrations at butt welds in pipelines. Mar. Struct. 2009, 22, 335–337. [Google Scholar] [CrossRef]
- Terán, G.; Albiter, A.; Cuamatzi-Meléndez, R. Parametric evaluation of the stress concentration factors in T-butt welded connections. Eng. Struct. 2013, 56, 1484–1495. [Google Scholar] [CrossRef]
- Boccarusso, L.; Arleo, G.; Astarita, A.; Bernardo, F.; De Fazio, P.; Durante, M.; Minutolo, F.M.C.; Sepe, R.; Squillace, A. A new approach to study the influence of the weld bead morphology on the fatigue behaviour of Ti–6Al–4V laser beam-welded butt joints. Int. J. Adv. Manuf. Technol. 2017, 88, 75–88. [Google Scholar] [CrossRef]
- Yu, Y.X.; He, B.L.; Zhang, X.D.; Lei, S.Y. Finite element calculation about stress concentration coefficient of welded butt joints of Magnesium Alloy. Adv. Mater. Res. 2014, 989, 935–938. [Google Scholar] [CrossRef]
- Kiyak, Y.; Madia, M.; Zerbst, U. Extended parametric equations for weld toe stress concentration factors and through-thickness stress distributions in butt-welded plates subject to tensile and bending loading. Weld. World 2016, 60, 1247–1259. [Google Scholar] [CrossRef]
- Pachoud, A.J.; Manso, P.A.; Schleiss, A.J. New parametric equations to estimate notch stress concentration factors at butt welded joints modeling the weld profile with splines. Eng. Failure Anal. 2017, 72, 11–24. [Google Scholar] [CrossRef]
- Weicheng, C.; Zhengquan, W.; Mansour, A.E. Stress concentration factor in plates with transverse butt-weld misalignment. J. Constr. Steel Res. 1999, 52, 159–170. [Google Scholar]
- Lotsberg, I. Stress concentrations due to misalignment at butt welds in plated structures and at girth welds in tubulars. Int. J. Fatigue 2009, 31, 1337–1345. [Google Scholar] [CrossRef]
- Cerit, M.; Kokumer, O.; Genel, K. Stress concentration effects of undercut defect and reinforcement metal in butt welded joint. Eng. Fail. Anal. 2010, 17, 571–578. [Google Scholar] [CrossRef]
- Williams, M.L. Stress singularities resulting from various boundary conditions in angular corners of plate in extension. J. Appl. Mech. 1952, 19, 526–528. [Google Scholar]
- Seweryn, A.; Molski, K.L. Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions. Eng. Fract. Mech. 1996, 55, 529–556. [Google Scholar] [CrossRef]
θ = 45° | X = ρ/(ρ + L) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y = L/(L + t) | 0.05 | 0.075 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 |
0.075 | 2.155 | 2.223 | 2.041 | 1.816 | 1.676 | 1.578 | 1.505 | 1.446 | 1.397 | 1.355 | 1.319 | 1.287 | 1.257 | 1.230 |
0.10 | 2.515 | 2.221 | 2.040 | 1.815 | 1.676 | 1.578 | 1.504 | 1.445 | 1.396 | 1.355 | 1.318 | 1.286 | 1.256 | 1.229 |
0.15 | 2.509 | 2.217 | 2.036 | 1.812 | 1.672 | 1.575 | 1.501 | 1.442 | 1.393 | 1.351 | 1.315 | 1.282 | 1.253 | 1.225 |
0.20 | 2.502 | 2.210 | 2.029 | 1.805 | 1.667 | 1.569 | 1.495 | 1.436 | 1.387 | 1.345 | 1.309 | 1.276 | 1.246 | 1.218 |
0.25 | 2.488 | 2.198 | 2.017 | 1.795 | 1.657 | 1.559 | 1.486 | 1.427 | 1.378 | 1.336 | 1.299 | 1.266 | 1.236 | 1.207 |
0.30 | 2.466 | 2.179 | 2.000 | 1.779 | 1.642 | 1.545 | 1.472 | 1.413 | 1.364 | 1.322 | 1.285 | 1.252 | 1.222 | 1.193 |
0.35 | 2.436 | 2.152 | 1.976 | 1.757 | 1.621 | 1.526 | 1.453 | 1.394 | 1.346 | 1.304 | 1.267 | 1.234 | 1.204 | 1.175 |
0.40 | 2.395 | 2.116 | 1.942 | 1.728 | 1.594 | 1.500 | 1.428 | 1.370 | 1.322 | 1.281 | 1.244 | 1.212 | 1.182 | 1.154 |
0.45 | 2.340 | 2.068 | 1.898 | 1.688 | 1.558 | 1.466 | 1.396 | 1.340 | 1.293 | 1.253 | 1.218 | 1.186 | 1.158 | 1.132 |
0.50 | 2.269 | 2.006 | 1.842 | 1.640 | 1.514 | 1.425 | 1.358 | 1.304 | 1.259 | 1.222 | 1.189 | 1.159 | 1.133 | 1.110 |
0.55 | 2.182 | 1.931 | 1.774 | 1.582 | 1.463 | 1.379 | 1.316 | 1.265 | 1.224 | 1.189 | 1.159 | 1.133 | 1.110 | 1.090 |
0.60 | 2.081 | 1.844 | 1.697 | 1.517 | 1.406 | 1.329 | 1.271 | 1.226 | 1.189 | 1.158 | 1.132 | 1.110 | 1.090 | 1.073 |
0.65 | 1.969 | 1.749 | 1.614 | 1.449 | 1.348 | 1.279 | 1.228 | 1.188 | 1.156 | 1.130 | 1.108 | 1.089 | 1.073 | 1.060 |
0.70 | 1.852 | 1.651 | 1.529 | 1.381 | 1.292 | 1.231 | 1.187 | 1.153 | 1.126 | 1.105 | 1.087 | 1.072 | 1.059 | 1.048 |
Anti–Plains State of Deformation | Steady–State Thermal Problem | ||
---|---|---|---|
Governing equation | Governing equation | ||
Shear stress components | Heat flux components | ||
Magnitude of the local stress | Magnitude of the local heat flux | ||
Magnitude of the displacement gradient | Magnitude of the temperature gradient | ||
Stress concentration factor Kts | Analogue quantity | ||
G—shear modulus | k—thermal conductivity |
θ = 30° | X = ρ/(ρ + L) | ||||||
---|---|---|---|---|---|---|---|
Y = L/(L + t) | 0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 |
0.15 | 2.251 2.253 * | 1.717 1.720 * | 1.518 1.519 * | 1.400 1.400 * | 1.318 1.317 * | 1.255 1.255 * | 1.203 1.205 * |
0.25 | 2.257 2.254 * | 1.722 1.721 * | 1.521 1.519 * | 1.403 1.400 * | 1.321 1.317 * | 1.258 1.254 * | 1.205 1.204 * |
0.35 | 2.262 2.253 * | 1.724 1.720 * | 1.523 1.518 * | 1.403 1.398 * | 1.319 1.314 * | 1.254 1.250 * | 1.198 1.199 * |
0.45 | 2.250 2.243 * | 1.713 1.711 * | 1.511 1.508 * | 1.389 1.386 * | 1.303 1.301 * | 1.234 1.236 * | 1.175 1.183 * |
0.55 | 2.198 2.200 * | 1.670 1.673 * | 1.469 1.472 * | 1.347 1.351 * | 1.260 1.266 * | 1.191 1.201 * | 1.134 1.149 * |
0.65 | 2.084 2.079 * | 1.581 1.576 * | 1.389 1.384 * | 1.274 1.270 * | 1.193 1.192 * | 1.132 1.133 * | 1.085 1.086 * |
θ = 30° | X = ρ/(ρ + L) | ||||||
---|---|---|---|---|---|---|---|
Y = L/(L + t) | 0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 |
0.15 | 2.245 2.226 * | 1.712 1.699 * | 1.512 1.500 * | 1.394 1.381 * | 1.311 1.299 * | 1.247 1.236 * | 1.194 1.186 * |
0.25 | 2.218 2.214 * | 1.690 1.690 * | 1.491 1.490 * | 1.373 1.372 * | 1.291 1.289 * | 1.226 1.227 * | 1.172 1.176 * |
0.35 | 2.157 2.169 * | 1.643 1.654 * | 1.449 1.458 * | 1.333 1.341 * | 1.252 1.260 * | 1.189 1.198 * | 1.137 1.148 * |
0.45 | 2.057 2.068 * | 1.568 1.576 * | 1.384 1.390 * | 1.276 1.280 * | 1.201 1.204 * | 1.144 1.147 * | 1.099 1.102 * |
0.55 | 1.925 1.913 * | 1.472 1.462 * | 1.305 1.296 * | 1.209 1.201 * | 1.146 1.138 * | 1.101 1.093 * | 1.067 1.060 * |
0.65 | 1.772 1.780 * | 1.365 1.372 * | 1.223 1.227 * | 1.146 1.150 * | 1.099 1.101 * | 1.067 1.069 * | 1.044 1.048 * |
θ = 30° | X = ρ/(ρ + L) | ||||||
---|---|---|---|---|---|---|---|
Y = L/(L + t) | 0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 |
0.15 | 1.604 1.604 * | 1.369 1.369 * | 1.271 1.272 * | 1.211 1.212 * | 1.167 1.169 * | 1.133 1.135 * | 1.105 1.107 * |
0.25 | 1.596 1.596 * | 1.361 1.362 * | 1.264 1.265 * | 1.204 1.205 * | 1.161 1.162 * | 1.126 1.128 * | 1.098 1.100 * |
0.35 | 1.579 1.579 * | 1.347 1.347 * | 1.251 1.252 * | 1.191 1.192 * | 1.148 1.150 * | 1.114 1.116 * | 1.086 1.088 * |
0.45 | 1.550 1.550 * | 1.323 1.323 * | 1.229 1.229 * | 1.171 1.171 * | 1.129 1.130 * | 1.097 1.098 * | 1.070 1.071 * |
0.55 | 1.509 1.508 * | 1.288 1.288 * | 1.198 1.198 * | 1.143 1.143 * | 1.105 1.104 * | 1.075 1.075 * | 1.052 1.052 * |
0.65 | 1.452 1.452 * | 1.242 1.243 * | 1.159 1.159 * | 1.110 1.109 * | 1.077 1.076 * | 1.053 1.052 * | 1.036 1.034 * |
ρ/t | θ* | |||||
---|---|---|---|---|---|---|
10° | 20° | 30° | 40° | 50° | 60° | |
0.01 | 1.79 * 1.83 | 2.53 * 2.56 | 3.19 * 3.19 | 3.71 * 3.75 | 4.12 * 4.26 | 4.41 * 4.73 |
0.025 | 1.64 * 1.67 | 2.15 * 2.19 | 2.55 * 2.60 | 2.84 * 2.91 | 3.03 * 3.16 | 3.16 * 3.36 |
0.05 | 1.53 * 1.53 | 1.90 * 1.92 | 2.16 * 2.19 | 2.33 * 2.37 | 2.43 * 2.49 | 2.48 * 2.57 |
0.1 | 1.43 * 1.41 | 1.69 * 1.68 | 1.84 * 1.84 | 1.92 * 1.94 | 1.96 * 1.99 | 1.98 * 2.00 |
0.2 | 1.34 * 1.30 | 1.50 * 1.48 | 1.58 * 1.58 | 1.61 * 1.62 | 1.62 * 1.63 | 1.62 * 1.62 |
0.4 | 1.26 * 1.22 | 1.34 * 1.34 | 1.37 * 1.39 | 1.38 * 1.41 | 1.38 * 1.40 | 1.38 * 1.38 |
H/t | 0.06387 | 0.12872 | 0.19560 | 0.26570 | 0.34041 | 0.42147 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molski, K.L.; Tarasiuk, P. Stress Concentration Factors for Butt-Welded Plates Subjected to Tensile, Bending and Shearing Loads. Materials 2020, 13, 1798. https://doi.org/10.3390/ma13081798
Molski KL, Tarasiuk P. Stress Concentration Factors for Butt-Welded Plates Subjected to Tensile, Bending and Shearing Loads. Materials. 2020; 13(8):1798. https://doi.org/10.3390/ma13081798
Chicago/Turabian StyleMolski, Krzysztof L., and Piotr Tarasiuk. 2020. "Stress Concentration Factors for Butt-Welded Plates Subjected to Tensile, Bending and Shearing Loads" Materials 13, no. 8: 1798. https://doi.org/10.3390/ma13081798
APA StyleMolski, K. L., & Tarasiuk, P. (2020). Stress Concentration Factors for Butt-Welded Plates Subjected to Tensile, Bending and Shearing Loads. Materials, 13(8), 1798. https://doi.org/10.3390/ma13081798